Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1990 Jul 25;18(14):4175–4178. doi: 10.1093/nar/18.14.4175

A simple vector modification to facilitate oligonucleotide-directed mutagenesis.

D R Setzer 1, R M Hmiel 1, S Y Liao 1
PMCID: PMC331175  PMID: 2115992

Abstract

We describe a simple modification of commonly used single-stranded cloning vectors that permits the efficient recovery of mutant DNA molecules in oligonucleotide-directed mutagenesis experiments, even when the absolute efficiency of mutagenesis is very low. The modification consists of the insertion of a short synthetic DNA fragment into the vector's polylinker and permits the identification of mutant clones based on a standard chromogenic plate assay for bacterial colonies or phage plaques producing functional beta-galactosidase. Other useful properties of the original vector are retained in the modified version. In vitro mutagenesis reactions are carried out with two oligonucleotides, one to introduce the mutation of interest, and the second to correct a frameshift mutation introduced into the beta-galactosidase gene of the modified vector. We have found that these two sequence changes are closely linked following transformation of an appropriate E. coli strain with the products of the in vitro mutagenesis reaction, and have thereby recovered desired mutations at a frequency of about 50% even when the overall mutagenesis efficiency is less than 1%. By alternately correcting and re-introducing the beta-galactosidase frameshift mutation, we have shown that multiple rounds of mutagenesis can be carried out on the same template with a high efficiency of mutant recovery in each step. Modifications similar or identical to those we describe here should be feasible for most commonly used single-stranded cloning vectors and should increase the usefulness of these vectors by providing an additional option for oligonucleotide-directed mutagenesis to be used in conjunction with or in lieu of other commonly used approaches.

Full text

PDF
4175

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bogenhagen D. F., Sakonju S., Brown D. D. A control region in the center of the 5S RNA gene directs specific initiation of transcription: II. The 3' border of the region. Cell. 1980 Jan;19(1):27–35. doi: 10.1016/0092-8674(80)90385-2. [DOI] [PubMed] [Google Scholar]
  2. Ginsberg A. M., King B. O., Roeder R. G. Xenopus 5S gene transcription factor, TFIIIA: characterization of a cDNA clone and measurement of RNA levels throughout development. Cell. 1984 Dec;39(3 Pt 2):479–489. doi: 10.1016/0092-8674(84)90455-0. [DOI] [PubMed] [Google Scholar]
  3. Gough J. A., Murray N. E. Sequence diversity among related genes for recognition of specific targets in DNA molecules. J Mol Biol. 1983 May 5;166(1):1–19. doi: 10.1016/s0022-2836(83)80047-3. [DOI] [PubMed] [Google Scholar]
  4. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  6. Messing J., Gronenborn B., Müller-Hill B., Hans Hopschneider P. Filamentous coliphage M13 as a cloning vehicle: insertion of a HindII fragment of the lac regulatory region in M13 replicative form in vitro. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3642–3646. doi: 10.1073/pnas.74.9.3642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. [DOI] [PubMed] [Google Scholar]
  8. Modrich P. Methyl-directed DNA mismatch correction. J Biol Chem. 1989 Apr 25;264(12):6597–6600. [PubMed] [Google Scholar]
  9. Peterson R. C., Doering J. L., Brown D. D. Characterization of two xenopus somatic 5S DNAs and one minor oocyte-specific 5S DNA. Cell. 1980 May;20(1):131–141. doi: 10.1016/0092-8674(80)90241-x. [DOI] [PubMed] [Google Scholar]
  10. Taylor J. W., Ott J., Eckstein F. The rapid generation of oligonucleotide-directed mutations at high frequency using phosphorothioate-modified DNA. Nucleic Acids Res. 1985 Dec 20;13(24):8765–8785. doi: 10.1093/nar/13.24.8765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Wagner R., Jr, Meselson M. Repair tracts in mismatched DNA heteroduplexes. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4135–4139. doi: 10.1073/pnas.73.11.4135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES