Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1990 Aug 11;18(15):4453–4461. doi: 10.1093/nar/18.15.4453

Random-breakage mapping, a rapid method for physically locating an internal sequence with respect to the ends of a DNA molecule.

J C Game 1, M Bell 1, J S King 1, R K Mortimer 1
PMCID: PMC331264  PMID: 2201948

Abstract

We describe a method for determining the position of a cloned internal sequence with respect to the ends of a DNA molecule. The molecules are randomly broken at low frequency and the fragments are subjected to electrophoresis. Southern hybridization using the cloned DNA as a probe identifies only those fragments containing the sequence. The size distribution of these fragments is such that two threshold changes in intensity of signal are seen in the smear pattern below the unbroken molecules. The positions of the changes represent the distances from the sequence to each molecular end. The intensity changes arise because the natural ends of the molecules influence the fragment distribution obtained. From once-broken molecules, no fragments can arise that contain a given sequence and are shorter than the distance between that sequence and the nearest molecular end. We tested the method by using x-rays to induce breakage in yeast DNA. Genes of independently known position were mapped within whole chromosomes or Not I restriction fragments using Southern blots from gels of irradiated molecules. We present equations to predict fragment distribution as a function of break-frequency and position of the probed sequence.

Full text

PDF
4453

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreadis A., Hsu Y. P., Kohlhaw G. B., Schimmel P. Nucleotide sequence of yeast LEU2 shows 5'-noncoding region has sequences cognate to leucine. Cell. 1982 Dec;31(2 Pt 1):319–325. doi: 10.1016/0092-8674(82)90125-8. [DOI] [PubMed] [Google Scholar]
  2. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blöcher D., Einspenner M., Zajackowski J. CHEF electrophoresis, a sensitive technique for the determination of DNA double-strand breaks. Int J Radiat Biol. 1989 Oct;56(4):437–448. doi: 10.1080/09553008914551591. [DOI] [PubMed] [Google Scholar]
  4. Burgers P. M., Percival K. J. Transformation of yeast spheroplasts without cell fusion. Anal Biochem. 1987 Jun;163(2):391–397. doi: 10.1016/0003-2697(87)90240-5. [DOI] [PubMed] [Google Scholar]
  5. Burke D. T., Carle G. F., Olson M. V. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science. 1987 May 15;236(4803):806–812. doi: 10.1126/science.3033825. [DOI] [PubMed] [Google Scholar]
  6. Carle G. F., Frank M., Olson M. V. Electrophoretic separations of large DNA molecules by periodic inversion of the electric field. Science. 1986 Apr 4;232(4746):65–68. doi: 10.1126/science.3952500. [DOI] [PubMed] [Google Scholar]
  7. Carle G. F., Olson M. V. Separation of chromosomal DNA molecules from yeast by orthogonal-field-alternation gel electrophoresis. Nucleic Acids Res. 1984 Jul 25;12(14):5647–5664. doi: 10.1093/nar/12.14.5647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chu G. Pulsed field electrophoresis in contour-clamped homogeneous electric fields for the resolution of DNA by size or topology. Electrophoresis. 1989 May-Jun;10(5-6):290–295. doi: 10.1002/elps.1150100504. [DOI] [PubMed] [Google Scholar]
  9. Chu G., Vollrath D., Davis R. W. Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science. 1986 Dec 19;234(4783):1582–1585. doi: 10.1126/science.3538420. [DOI] [PubMed] [Google Scholar]
  10. Contopoulou C. R., Cook V. E., Mortimer R. K. Analysis of DNA double strand breakage and repair using orthogonal field alternation gel electrophoresis. Yeast. 1987 Jun;3(2):71–76. doi: 10.1002/yea.320030203. [DOI] [PubMed] [Google Scholar]
  11. Cox D. R., Pritchard C. A., Uglum E., Casher D., Kobori J., Myers R. M. Segregation of the Huntington disease region of human chromosome 4 in a somatic cell hybrid. Genomics. 1989 Apr;4(3):397–407. doi: 10.1016/0888-7543(89)90347-9. [DOI] [PubMed] [Google Scholar]
  12. Daniels D. L., Olson C. H., Brumley R., Blattner F. R. Field inversion gel electrophoresis applied to the rapid, multi-enzyme restriction mapping of phage lambda clones. Nucleic Acids Res. 1990 Mar 11;18(5):1312–1312. doi: 10.1093/nar/18.5.1312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Game J. C., Sitney K. C., Cook V. E., Mortimer R. K. Use of a ring chromosome and pulsed-field gels to study interhomolog recombination, double-strand DNA breaks and sister-chromatid exchange in yeast. Genetics. 1989 Dec;123(4):695–713. doi: 10.1093/genetics/123.4.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gekeler V., Weger S., Eichele E., Probst H. Computer-controlled discontinuous rotating gel electrophoresis for separation of very large DNA molecules. Anal Biochem. 1989 Sep;181(2):227–233. doi: 10.1016/0003-2697(89)90234-0. [DOI] [PubMed] [Google Scholar]
  15. Goss S. J., Harris H. Gene transfer by means of cell fusion. II. The mapping of 8 loci on human chromosome 1 by statistical analysis of gene assortment in somatic cell hybrids. J Cell Sci. 1977 Jun;25:39–57. doi: 10.1242/jcs.25.1.39. [DOI] [PubMed] [Google Scholar]
  16. Laskey R. A., Mills A. D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem. 1975 Aug 15;56(2):335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
  17. Melgar E., Goldthwait D. A. Deoxyribonucleic acid nucleases. II. The effects of metals on the mechanism of action of deoxyribonuclease I. J Biol Chem. 1968 Sep 10;243(17):4409–4416. [PubMed] [Google Scholar]
  18. Mortimer R. K., Schild D., Contopoulou C. R., Kans J. A. Genetic map of Saccharomyces cerevisiae, edition 10. Yeast. 1989 Sep-Oct;5(5):321–403. doi: 10.1002/yea.320050503. [DOI] [PubMed] [Google Scholar]
  19. Nelson J. M., Miceli S. M., Lechevalier M. P., Roberts R. J. FseI, a new type II restriction endonuclease that recognizes the octanucleotide sequence 5' GGCCGGCC 3'. Nucleic Acids Res. 1990 Apr 25;18(8):2061–2064. doi: 10.1093/nar/18.8.2061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Olson M. V., Dutchik J. E., Graham M. Y., Brodeur G. M., Helms C., Frank M., MacCollin M., Scheinman R., Frank T. Random-clone strategy for genomic restriction mapping in yeast. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7826–7830. doi: 10.1073/pnas.83.20.7826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pavan W. J., Hieter P., Reeves R. H. Generation of deletion derivatives by targeted transformation of human-derived yeast artificial chromosomes. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1300–1304. doi: 10.1073/pnas.87.4.1300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rose M., Grisafi P., Botstein D. Structure and function of the yeast URA3 gene: expression in Escherichia coli. Gene. 1984 Jul-Aug;29(1-2):113–124. doi: 10.1016/0378-1119(84)90172-0. [DOI] [PubMed] [Google Scholar]
  23. Schwartz D. C., Cantor C. R. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell. 1984 May;37(1):67–75. doi: 10.1016/0092-8674(84)90301-5. [DOI] [PubMed] [Google Scholar]
  24. Smith C. L., Condemine G. New approaches for physical mapping of small genomes. J Bacteriol. 1990 Mar;172(3):1167–1172. doi: 10.1128/jb.172.3.1167-1172.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  26. Struhl K. Nucleotide sequence and transcriptional mapping of the yeast pet56-his3-ded1 gene region. Nucleic Acids Res. 1985 Dec 9;13(23):8587–8601. doi: 10.1093/nar/13.23.8587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Vollrath D., Davis R. W., Connelly C., Hieter P. Physical mapping of large DNA by chromosome fragmentation. Proc Natl Acad Sci U S A. 1988 Aug;85(16):6027–6031. doi: 10.1073/pnas.85.16.6027. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES