Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Nucleic Acids Research logoLink to Nucleic Acids Research
. 1993 Oct 11;21(20):4739–4741. doi: 10.1093/nar/21.20.4739

Effect of excess water on the desilylation of oligoribonucleotides using tetrabutylammonium fluoride.

R I Hogrefe 1, A P McCaffrey 1, L U Borozdina 1, E S McCampbell 1, M M Vaghefi 1
PMCID: PMC331499  PMID: 8233822

Abstract

The most commonly available 2' hydroxyl protecting group used in the synthesis of oligoribonucleotides is the tert-butyldimethylsilyl moiety. This protecting group is generally cleaved with 1 M tetrabutylammonium fluoride (TBAF) in tetrahydrofuran (THF). The efficiency of this reaction was tested on ribonucleotidyldeoxythymidine dinucleotides (AT, CT, GT, and UT). We have found that the efficiency of desilylation of uridine and cytidine is greatly dependent on the water content of the TBAF reagent. Conversely, the water content of the TBAF reagent [up to 17% (w/w)] had no detectable effect on the rate of desilylation of adenosine and guanosine. It was concluded that for effective desilylation of pyrimidine nucleosides the water content of the TBAF reagent must be 5% or less, which is readily achieved using molecular sieves. TBAF dried in such a manner was shown to be effective in deprotecting an oligoribonucleotide containing both purine and pyrimidine residues.

Full text

PDF
4739

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Scaringe S. A., Francklyn C., Usman N. Chemical synthesis of biologically active oligoribonucleotides using beta-cyanoethyl protected ribonucleoside phosphoramidites. Nucleic Acids Res. 1990 Sep 25;18(18):5433–5441. doi: 10.1093/nar/18.18.5433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Sinha N. D., Davis P., Usman N., Pérez J., Hodge R., Kremsky J., Casale R. Labile exocyclic amine protection of nucleosides in DNA, RNA and oligonucleotide analog synthesis facilitating N-deacylation, minimizing depurination and chain degradation. Biochimie. 1993;75(1-2):13–23. doi: 10.1016/0300-9084(93)90019-o. [DOI] [PubMed] [Google Scholar]
  3. Stawinski J., Strömberg R., Thelin M., Westman E. Studies on the t-butyldimethylsilyl group as 2'-O-protection in oligoribonucleotide synthesis via the H-phosphonate approach. Nucleic Acids Res. 1988 Oct 11;16(19):9285–9298. doi: 10.1093/nar/16.19.9285. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES