Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1989 Feb 11;17(3):845–851. doi: 10.1093/nar/17.3.845

Structural and functional exchangeability of 5 S RNA species from the eubacterium E.coli and the thermoacidophilic archaebacterium Sulfolobus solfataricus.

J Teixidò 1, S Altamura 1, P Londei 1, R Amils 1
PMCID: PMC331707  PMID: 2493632

Abstract

The role of 5 S RNA within the large ribosomal subunit of the extremely thermophilic archaebacterium Sulfolobus solfataricus has been analysed by means of in vitro reconstitution procedures. It is shown that Sulfolobus 50 S subunits reconstituted in the absence of 5 S RNA are inactive in protein synthesis and lack 2-3 ribosomal proteins. Furthermore, it has been determined that in the course of the in vitro assembly process Sulfolobus 5 S RNA can be replaced by the correspondent RNA species of E.coli; Sulfolobus reconstituted particles containing the eubacterial 5 S molecule are stable and active in polypeptide synthesis at high temperatures.

Full text

PDF
845

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amils R., Matthews E. A., Cantor C. R. Reconstitution of 50 S ribosomal subunits from Escherichia coli. Methods Enzymol. 1979;59:449–461. doi: 10.1016/0076-6879(79)59107-1. [DOI] [PubMed] [Google Scholar]
  2. Dams E., Londei P., Cammarano P., Vandenberghe A., De Wachter R. Sequences of the 5S rRNAs of the thermo-acidophilic archaebacterium Sulfolobus solfataricus (Caldariella acidophila) and the thermophilic eubacteria Bacillus acidocaldarius and Thermus aquaticus. Nucleic Acids Res. 1983 Jul 25;11(14):4667–4676. doi: 10.1093/nar/11.14.4667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dohme F., Nierhaus K. H. Role of 5S RNA in assembly and function of the 50S subunit from Escherichia coli. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2221–2225. doi: 10.1073/pnas.73.7.2221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hartmann R. K., Vogel D. W., Walker R. T., Erdmann V. A. In vitro incorporation of eubacterial, archaebacterial and eukaryotic 5S rRNAs into large ribosomal subunits of Bacillus stearothermophilus. Nucleic Acids Res. 1988 Apr 25;16(8):3511–3524. doi: 10.1093/nar/16.8.3511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Londei P., Teichner A., Cammarano P., De Rosa M., Gambacorta A. Particle weights and protein composition of the ribosomal subunits of the extremely thermoacidophilic archaebacterium Caldariella acidophila. Biochem J. 1983 Feb 1;209(2):461–470. doi: 10.1042/bj2090461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Londei P., Teixidò J., Acca M., Cammarano P., Amils R. Total reconstitution of active large ribosomal subunits of the thermoacidophilic archaebacterium Sulfolobus solfataricus. Nucleic Acids Res. 1986 Mar 11;14(5):2269–2285. doi: 10.1093/nar/14.5.2269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Nierhaus K. H., Dohme F. Total reconstitution of functionally active 50S ribosomal subunits from Escherichia coli. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4713–4717. doi: 10.1073/pnas.71.12.4713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Stahl D. A., Luehrsen K. R., Woese C. R., Pace N. R. An unusual 5S rRNA, from Sulfolobus acidocaldarius, and its implications for a general 5S rRNA structure. Nucleic Acids Res. 1981 Nov 25;9(22):6129–6137. doi: 10.1093/nar/9.22.6129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Vogel D. W., Hartmann R. K., Bartsch M., Subramanian A. R., Kleinow W., O'Brien T. W., Pieler T., Erdmann V. A. Reconstitution of 50 S ribosomal subunits from Bacillus stearothermophilus with 5 S RNA from spinach chloroplasts and low-Mr RNA from mitochondria of Locusta migratoria and bovine liver. FEBS Lett. 1984 Apr 9;169(1):67–72. doi: 10.1016/0014-5793(84)80291-4. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES