Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1994 Oct 11;22(20):4039–4043. doi: 10.1093/nar/22.20.4039

5-Nitroindole as an universal base analogue.

D Loakes 1, D M Brown 1
PMCID: PMC331887  PMID: 7937128

Abstract

4-, 5- and 6-Nitroindole have been investigated and compared with 3-nitropyrrole as universal bases in oligodeoxynucleotides. Of these the 5-nitroindole derivative was found to be superior giving higher duplex stability, and behaving indiscriminately towards each of the four natural bases in duplex melting experiments. 3-Nitropyrrole, whilst not discriminating between the natural bases, was found to lead to considerable destabilisation of the duplexes, particularly when multiple substitutions were made, in contrast to the 5-nitroindole nucleoside.

Full text

PDF
4039

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown D. M., Lin P. K. Synthesis and duplex stability of oligonucleotides containing adenine-guanine analogues. Carbohydr Res. 1991 Sep 2;216:129–139. doi: 10.1016/0008-6215(92)84156-m. [DOI] [PubMed] [Google Scholar]
  2. Case-Green S. C., Southern E. M. Studies on the base pairing properties of deoxyinosine by solid phase hybridisation to oligonucleotides. Nucleic Acids Res. 1994 Jan 25;22(2):131–136. doi: 10.1093/nar/22.2.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Eritja R., Horowitz D. M., Walker P. A., Ziehler-Martin J. P., Boosalis M. S., Goodman M. F., Itakura K., Kaplan B. E. Synthesis and properties of oligonucleotides containing 2'-deoxynebularine and 2'-deoxyxanthosine. Nucleic Acids Res. 1986 Oct 24;14(20):8135–8153. doi: 10.1093/nar/14.20.8135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gralla J., Crothers D. M. Free energy of imperfect nucleic acid helices. 3. Small internal loops resulting from mismatches. J Mol Biol. 1973 Aug 5;78(2):301–319. doi: 10.1016/0022-2836(73)90118-6. [DOI] [PubMed] [Google Scholar]
  5. Habener J. F., Vo C. D., Le D. B., Gryan G. P., Ercolani L., Wang A. H. 5-Fluorodeoxyuridine as an alternative to the synthesis of mixed hybridization probes for the detection of specific gene sequences. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1735–1739. doi: 10.1073/pnas.85.6.1735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Inoue H., Imura A., Ohtsuka E. Synthesis and hybridization of dodecadeoxyribonucleotides containing a fluorescent pyridopyrimidine deoxynucleoside. Nucleic Acids Res. 1985 Oct 11;13(19):7119–7128. doi: 10.1093/nar/13.19.7119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kamiya H., Sakaguchi T., Murata N., Fujimuro M., Miura H., Ishikawa H., Shimizu M., Inoue H., Nishimura S., Matsukage A. In vitro replication study of modified bases in ras sequences. Chem Pharm Bull (Tokyo) 1992 Oct;40(10):2792–2795. doi: 10.1248/cpb.40.2792. [DOI] [PubMed] [Google Scholar]
  8. Kawase Y., Iwai S., Inoue H., Miura K., Ohtsuka E. Studies on nucleic acid interactions. I. Stabilities of mini-duplexes (dG2A4XA4G2-dC2T4YT4C2) and self-complementary d(GGGAAXYTTCCC) containing deoxyinosine and other mismatched bases. Nucleic Acids Res. 1986 Oct 10;14(19):7727–7736. doi: 10.1093/nar/14.19.7727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lin P. K., Brown D. M. Synthesis and duplex stability of oligonucleotides containing cytosine-thymine analogues. Nucleic Acids Res. 1989 Dec 25;17(24):10373–10383. doi: 10.1093/nar/17.24.10373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lin P. K., Brown D. M. Synthesis of oligodeoxyribonucleotides containing degenerate bases and their use as primers in the polymerase chain reaction. Nucleic Acids Res. 1992 Oct 11;20(19):5149–5152. doi: 10.1093/nar/20.19.5149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Martin F. H., Castro M. M., Aboul-ela F., Tinoco I., Jr Base pairing involving deoxyinosine: implications for probe design. Nucleic Acids Res. 1985 Dec 20;13(24):8927–8938. doi: 10.1093/nar/13.24.8927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Millican T. A., Mock G. A., Chauncey M. A., Patel T. P., Eaton M. A., Gunning J., Cutbush S. D., Neidle S., Mann J. Synthesis and biophysical studies of short oligodeoxynucleotides with novel modifications: a possible approach to the problem of mixed base oligodeoxynucleotide synthesis. Nucleic Acids Res. 1984 Oct 11;12(19):7435–7453. doi: 10.1093/nar/12.19.7435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nichols R., Andrews P. C., Zhang P., Bergstrom D. E. A universal nucleoside for use at ambiguous sites in DNA primers. Nature. 1994 Jun 9;369(6480):492–493. doi: 10.1038/369492a0. [DOI] [PubMed] [Google Scholar]
  14. Nishio H., Ono A., Matsuda A., Ueda T. The synthesis and properties of oligodeoxyribonucleotides containing N6-methoxyadenine. Nucleic Acids Res. 1992 Feb 25;20(4):777–782. doi: 10.1093/nar/20.4.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ohtsuka E., Matsuki S., Ikehara M., Takahashi Y., Matsubara K. An alternative approach to deoxyoligonucleotides as hybridization probes by insertion of deoxyinosine at ambiguous codon positions. J Biol Chem. 1985 Mar 10;260(5):2605–2608. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES