Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1994 Oct 11;22(20):4268–4275. doi: 10.1093/nar/22.20.4268

Patterns of intracellular compartmentalization, trafficking and acidification of 5'-fluorescein labeled phosphodiester and phosphorothioate oligodeoxynucleotides in HL60 cells.

J L Tonkinson 1, C A Stein 1
PMCID: PMC331940  PMID: 7937155

Abstract

We have examined the intracellular compartmentalization and trafficking of fluorescein labeled (F) phosphodiester (PO) and phosphorothioate (PS) oligodeoxynucleotides (oligos) in HL60 cells. A series of F-oligos (PO and PS) were incubated for 6 hrs. with HL60 cells and the mean intracellular fluorescence determined by flow cytometry. The F signal was normalized by the addition of the ionophore monensin. An increase in signal intensity following addition of monensin indicated that the oligo was resident in an acidic intracellular environment. F-PS, but not F-PO oligos were found to reside in an acidic environment. An exception was a PO homopolymer of 15 cytidine bases (FOdC15) which was acidified. Using two different methods, the average resident intracellular pH of F-PS oligos and F-OdC15 was shown to be approximately 1 pH unit lower than that of F-PO oligos. Acidification of F-PS oligos could be blocked by the antibiotic bafilomycin, indicating that acidification was occurring in endosomes or vacuoles. F-PO and F-PS oligos were effluxed from HL60 cells from two intracellular compartments. However, approximately 60% of internalized F-PO oligo resided in a 'shallow' compartment that was turned over rapidly (t1/2 = 5-10 min.) whereas only 20% of F-PS oligo resided in this compartment. Conversely, approximately 80% of the internalized F-PS oligo but only 40% of F-PO oligo resided in a 'deep' compartment that turned over with t1/2 = 2-5 hrs. This report is the first quantitative demonstration that PO and PS oligos, and PO oligos of different sequences are trafficked differently by HL60 cells.

Full text

PDF
4268

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams C. J., Maurey K. M., Storrie B. Exocytosis of pinocytic contents by Chinese hamster ovary cells. J Cell Biol. 1982 Jun;93(3):632–637. doi: 10.1083/jcb.93.3.632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Besterman J. M., Airhart J. A., Woodworth R. C., Low R. B. Exocytosis of pinocytosed fluid in cultured cells: kinetic evidence for rapid turnover and compartmentation. J Cell Biol. 1981 Dec;91(3 Pt 1):716–727. doi: 10.1083/jcb.91.3.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blomhoff R., Nenseter M. S., Green M. H., Berg T. A multicompartmental model of fluid-phase endocytosis in rabbit liver parenchymal cells. Biochem J. 1989 Sep 1;262(2):605–610. doi: 10.1042/bj2620605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dagle J. M., Weeks D. L., Walder J. A. Pathways of degradation and mechanism of action of antisense oligonucleotides in Xenopus laevis embryos. Antisense Res Dev. 1991 Spring;1(1):11–20. doi: 10.1089/ard.1991.1.11. [DOI] [PubMed] [Google Scholar]
  5. Fisher T. L., Terhorst T., Cao X., Wagner R. W. Intracellular disposition and metabolism of fluorescently-labeled unmodified and modified oligonucleotides microinjected into mammalian cells. Nucleic Acids Res. 1993 Aug 11;21(16):3857–3865. doi: 10.1093/nar/21.16.3857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gao W. Y., Storm C., Egan W., Cheng Y. C. Cellular pharmacology of phosphorothioate homooligodeoxynucleotides in human cells. Mol Pharmacol. 1993 Jan;43(1):45–50. [PubMed] [Google Scholar]
  7. Holt J. T., Redner R. L., Nienhuis A. W. An oligomer complementary to c-myc mRNA inhibits proliferation of HL-60 promyelocytic cells and induces differentiation. Mol Cell Biol. 1988 Feb;8(2):963–973. doi: 10.1128/mcb.8.2.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Knorre D. G., Vlassov V. V., Zarytova V. F., Karpova G. G. Nucleotide and oligonucleotide derivatives as enzyme and nucleic acid targeted irreversible inhibitors. Chemical aspects. Adv Enzyme Regul. 1985;24:277–299. doi: 10.1016/0065-2571(85)90082-2. [DOI] [PubMed] [Google Scholar]
  9. Krieg A. M., Tonkinson J., Matson S., Zhao Q., Saxon M., Zhang L. M., Bhanja U., Yakubov L., Stein C. A. Modification of antisense phosphodiester oligodeoxynucleotides by a 5' cholesteryl moiety increases cellular association and improves efficacy. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):1048–1052. doi: 10.1073/pnas.90.3.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Loke S. L., Stein C. A., Zhang X. H., Mori K., Nakanishi M., Subasinghe C., Cohen J. S., Neckers L. M. Characterization of oligonucleotide transport into living cells. Proc Natl Acad Sci U S A. 1989 May;86(10):3474–3478. doi: 10.1073/pnas.86.10.3474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Loke S. L., Stein C., Zhang X., Avigan M., Cohen J., Neckers L. M. Delivery of c-myc antisense phosphorothioate oligodeoxynucleotides to hematopoietic cells in culture by liposome fusion: specific reduction in c-myc protein expression correlates with inhibition of cell growth and DNA synthesis. Curr Top Microbiol Immunol. 1988;141:282–289. doi: 10.1007/978-3-642-74006-0_38. [DOI] [PubMed] [Google Scholar]
  12. Marshall E. When the source is a suspect. Science. 1993 Jul 16;261(5119):285–285. doi: 10.1126/science.261.5119.285. [DOI] [PubMed] [Google Scholar]
  13. Marti G., Egan W., Noguchi P., Zon G., Matsukura M., Broder S. Oligodeoxyribonucleotide phosphorothioate fluxes and localization in hematopoietic cells. Antisense Res Dev. 1992 Spring;2(1):27–39. doi: 10.1089/ard.1992.2.27. [DOI] [PubMed] [Google Scholar]
  14. Maxfield F. R. Weak bases and ionophores rapidly and reversibly raise the pH of endocytic vesicles in cultured mouse fibroblasts. J Cell Biol. 1982 Nov;95(2 Pt 1):676–681. doi: 10.1083/jcb.95.2.676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nelson N. Structure and pharmacology of the proton-ATPases. Trends Pharmacol Sci. 1991 Feb;12(2):71–75. doi: 10.1016/0165-6147(91)90501-i. [DOI] [PubMed] [Google Scholar]
  16. Nielsen P. E., Egholm M., Berg R. H., Buchardt O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science. 1991 Dec 6;254(5037):1497–1500. doi: 10.1126/science.1962210. [DOI] [PubMed] [Google Scholar]
  17. Ohkuma S., Poole B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3327–3331. doi: 10.1073/pnas.75.7.3327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shoji Y., Akhtar S., Periasamy A., Herman B., Juliano R. L. Mechanism of cellular uptake of modified oligodeoxynucleotides containing methylphosphonate linkages. Nucleic Acids Res. 1991 Oct 25;19(20):5543–5550. doi: 10.1093/nar/19.20.5543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stein C. A., Cleary A. M., Yakubov L., Lederman S. Phosphorothioate oligodeoxynucleotides bind to the third variable loop domain (v3) of human immunodeficiency virus type 1 gp120. Antisense Res Dev. 1993 Spring;3(1):19–31. doi: 10.1089/ard.1993.3.19. [DOI] [PubMed] [Google Scholar]
  20. Stein C. A., Subasinghe C., Shinozuka K., Cohen J. S. Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res. 1988 Apr 25;16(8):3209–3221. doi: 10.1093/nar/16.8.3209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Stein C. A., Tonkinson J. L., Zhang L. M., Yakubov L., Gervasoni J., Taub R., Rotenberg S. A. Dynamics of the internalization of phosphodiester oligodeoxynucleotides in HL60 cells. Biochemistry. 1993 May 11;32(18):4855–4861. doi: 10.1021/bi00069a022. [DOI] [PubMed] [Google Scholar]
  22. Temsamani J., Kubert M., Tang J., Padmapriya A., Agrawal S. Cellular uptake of oligodeoxynucleotide phosphorothioates and their analogs. Antisense Res Dev. 1994 Spring;4(1):35–42. doi: 10.1089/ard.1994.4.35. [DOI] [PubMed] [Google Scholar]
  23. Wickstrom E. L., Bacon T. A., Gonzalez A., Freeman D. L., Lyman G. H., Wickstrom E. Human promyelocytic leukemia HL-60 cell proliferation and c-myc protein expression are inhibited by an antisense pentadecadeoxynucleotide targeted against c-myc mRNA. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1028–1032. doi: 10.1073/pnas.85.4.1028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yakubov L. A., Deeva E. A., Zarytova V. F., Ivanova E. M., Ryte A. S., Yurchenko L. V., Vlassov V. V. Mechanism of oligonucleotide uptake by cells: involvement of specific receptors? Proc Natl Acad Sci U S A. 1989 Sep;86(17):6454–6458. doi: 10.1073/pnas.86.17.6454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yakubov L., Khaled Z., Zhang L. M., Truneh A., Vlassov V., Stein C. A. Oligodeoxynucleotides interact with recombinant CD4 at multiple sites. J Biol Chem. 1993 Sep 5;268(25):18818–18823. [PubMed] [Google Scholar]
  26. Yamashiro D. J., Maxfield F. R. Acidification of endocytic compartments and the intracellular pathways of ligands and receptors. J Cell Biochem. 1984;26(4):231–246. doi: 10.1002/jcb.240260404. [DOI] [PubMed] [Google Scholar]
  27. Yoshimori T., Yamamoto A., Moriyama Y., Futai M., Tashiro Y. Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem. 1991 Sep 15;266(26):17707–17712. [PubMed] [Google Scholar]
  28. Zamecnik P., Aghajanian J., Zamecnik M., Goodchild J., Witman G. Electron micrographic studies of transport of oligodeoxynucleotides across eukaryotic cell membranes. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3156–3160. doi: 10.1073/pnas.91.8.3156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. van Deurs B., Röpke C., Thorball N. Kinetics of pinocytosis studied by flow cytometry. Eur J Cell Biol. 1984 May;34(1):96–102. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES