Abstract
45 mutations (insertion, deletion and base substitution) of the G4 Goric were tested for their functional activity in M13 and R199 in vivo. The critical mutants were also assayed for their ability to synthesize pRNA in vitro using SSB and primase. The results demonstrate that the secondary structure and spacing of stem-loops I and III are essential for Goric activity and that the 5'-CTG-3' sequence flanking stem-loop I is essential for initiation of pRNA synthesis.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benz E. W., Jr, Reinberg D., Vicuna R., Hurwitz J. Initiation of DNA replication by the dnaG protein. J Biol Chem. 1980 Feb 10;255(3):1096–1106. [PubMed] [Google Scholar]
- Bouché J. P., Rowen L., Kornberg A. The RNA primer synthesized by primase to initiate phage G4 DNA replication. J Biol Chem. 1978 Feb 10;253(3):765–769. [PubMed] [Google Scholar]
- Godson G. N., Barrell B. G., Staden R., Fiddes J. C. Nucleotide sequence of bacteriophage G4 DNA. Nature. 1978 Nov 16;276(5685):236–247. doi: 10.1038/276236a0. [DOI] [PubMed] [Google Scholar]
- Hiasa H., Sakai H., Komano T. Identification of single-strand initiation signals in the terC region of the Escherichia coli chromosome. FEBS Lett. 1989 Mar 27;246(1-2):21–24. doi: 10.1016/0014-5793(89)80245-5. [DOI] [PubMed] [Google Scholar]
- Hiasa H., Sakai H., Tanaka K., Honda Y., Komano T., Godson G. N. Mutational analysis of the primer RNA template region in the replication origin (oric) of bacteriophage G4: priming signal recognition by Escherichia coli primase. Gene. 1989 Dec 7;84(1):9–16. doi: 10.1016/0378-1119(89)90133-9. [DOI] [PubMed] [Google Scholar]
- Hiasa H., Tanaka K., Sakai H., Yoshida K., Honda Y., Komano T., Godson G. N. Distinct functional contributions of three potential secondary structures in the phage G4 origin of complementary DNA strand synthesis. Gene. 1989 Dec 7;84(1):17–22. doi: 10.1016/0378-1119(89)90134-0. [DOI] [PubMed] [Google Scholar]
- Kodaira K., Nakano K., Taketo A. Mutational analysis of the bacteriophage alpha 3 origin of complementary DNA synthesis: in vivo properties of mutants. Biochim Biophys Acta. 1989 Apr 12;1007(3):359–362. doi: 10.1016/0167-4781(89)90160-7. [DOI] [PubMed] [Google Scholar]
- Kodaira K., Nakano K., Taketo A. Novel replication mutant of microvirid phage alpha 3 deleted in the complementary strand origin. Mol Gen Genet. 1990 Jan;220(2):240–244. doi: 10.1007/BF00260488. [DOI] [PubMed] [Google Scholar]
- Lambert P. F., Kawashima E., Reznikoff W. S. Secondary structure at the bacteriophage G4 origin of complementary-strand DNA synthesis: in vivo requirements. Gene. 1987;53(2-3):257–264. doi: 10.1016/0378-1119(87)90014-x. [DOI] [PubMed] [Google Scholar]
- Lambert P. F., Waring D. A., Wells R. D., Reznikoff W. S. DNA requirements at the bacteriophage G4 origin of complementary-strand DNA synthesis. J Virol. 1986 May;58(2):450–458. doi: 10.1128/jvi.58.2.450-458.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Masai H., Arai K. Leading strand synthesis of R1 plasmid replication in vitro is primed by primase alone at a specific site downstream of oriR. J Biol Chem. 1989 May 15;264(14):8082–8090. [PubMed] [Google Scholar]
- Nakano K., Kodaira K., Taketo A. Properties of the bacteriophage alpha 3 mutants with deletion and/or insertion in the complementary strand origin. Biochim Biophys Acta. 1990 Jan 30;1048(1):43–49. doi: 10.1016/0167-4781(90)90020-3. [DOI] [PubMed] [Google Scholar]
- Rowen L., Kornberg A. A ribo-deoxyribonucleotide primer synthesized by primase. J Biol Chem. 1978 Feb 10;253(3):770–774. [PubMed] [Google Scholar]
- Sakai H., Godson G. N. Isolation and construction of mutants of the G4 minus strand origin: analysis of their in vivo activity. Biochim Biophys Acta. 1985 Oct 3;826(1):30–37. doi: 10.1016/s0167-4781(85)80005-1. [DOI] [PubMed] [Google Scholar]
- Sakai H., Hiasa H., Iwamoto K., Horimoto T., Komano T., Godson G. N. Role of the potential secondary structures in phage G4 origin of complementary DNA strand synthesis. Gene. 1988 Nov 30;71(2):323–330. doi: 10.1016/0378-1119(88)90049-2. [DOI] [PubMed] [Google Scholar]
- Sakai H., Komano T., Godson G. N. Replication origin (oric) on the complementary DNA strand of Escherichia coli phage G4: biological properties of mutants. Gene. 1987;53(2-3):265–273. doi: 10.1016/0378-1119(87)90015-1. [DOI] [PubMed] [Google Scholar]
- Sims J., Benz E. W., Jr Initiation of DNA replication by the Escherichia coli dnaG protein: evidence that tertiary structure is involved. Proc Natl Acad Sci U S A. 1980 Feb;77(2):900–904. doi: 10.1073/pnas.77.2.900. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sims J., Capon D., Dressler D. dnaG (primase)-dependent origins of DNA replication. Nucleotide sequences of the negative strand initiation sites of bacteriophages St-1, phi K, and alpha 3. J Biol Chem. 1979 Dec 25;254(24):12615–12628. [PubMed] [Google Scholar]
- Sims J., Dressler D. Site-specific initiation of a DNA fragment: nucleotide sequence of the bacteriophage G4 negative-strand initiation site. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3094–3098. doi: 10.1073/pnas.75.7.3094. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stayton M. M., Kornberg A. Complexes of Escherichia coli primase with the replication origin of G4 phage DNA. J Biol Chem. 1983 Nov 10;258(21):13205–13212. [PubMed] [Google Scholar]
- Ueda K., Kobayashi S., Sakai H., Komano T. Cleavage of stem-and-loop structure DNA by bleomycin. Reaction on the bacteriophage G4 origin of complementary strand synthesis. J Biol Chem. 1985 May 10;260(9):5804–5807. [PubMed] [Google Scholar]
- Yoda K., Yasuda H., Jiang X. W., Okazaki T. RNA-primed initiation sites of DNA replication in the origin region of bacteriophage lambda genome. Nucleic Acids Res. 1988 Jul 25;16(14A):6531–6546. doi: 10.1093/nar/16.14.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zechel K., Bouché J. P., Kornberg A. Replication of phage G4. A novel and simple system for the initiation of deoxyribonucleic acid synthesis. J Biol Chem. 1975 Jun 25;250(12):4684–4689. [PubMed] [Google Scholar]