Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1994 Dec 11;22(24):5378–5384. doi: 10.1093/nar/22.24.5378

Higher-order structure of bovine mitochondrial tRNA(SerUGA): chemical modification and computer modeling.

Y Watanabe 1, G Kawai 1, T Yokogawa 1, N Hayashi 1, Y Kumazawa 1, T Ueda 1, K Nishikawa 1, I Hirao 1, K Miura 1, K Watanabe 1
PMCID: PMC332086  PMID: 7529407

Abstract

On the basis of enzymatic probing and phylogenetic comparison, we have previously proposed that mammalian mitochondrial tRNA(sSer) (anticodon UGA) possess a slightly altered cloverleaf structure in which only one nucleotide exists between the acceptor stem and D stem (usually two nucleotides) and the anticodon stem consists of six base pairs (usually five base pairs) [Yokogawa et al. (1991) Nucleic Acids Res. 19, 6101-6105]. To ascertain whether such tRNA(sSer) can be folded into a normal L-shaped tertiary structure, the higher-order structure of bovine mitochondrial tRNA(SerUGA) was examined by chemical probing using dimethylsulfate and diethylpyrocarbonate, and on the basis of the results a tertiary structure model was obtained by computer modeling. It was found that a one-base-pair elongation in the anticodon stem was compensated for by multiple-base deletions in the D and extra loop regions of the tRNA(SerUGA), which resulted in preservation of an L-shaped tertiary structure similar to that of conventional tRNAs. By summarizing the findings, the general structural requirements of mitochondrial tRNAs necessary for their functioning in the mitochondrial translation system are considered.

Full text

PDF
5378

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnason U., Gullberg A. Comparison between the complete mtDNA sequences of the blue and the fin whale, two species that can hybridize in nature. J Mol Evol. 1993 Oct;37(4):312–322. doi: 10.1007/BF00178861. [DOI] [PubMed] [Google Scholar]
  2. Arnason U., Gullberg A., Johnsson E., Ledje C. The nucleotide sequence of the mitochondrial DNA molecule of the grey seal, Halichoerus grypus, and a comparison with mitochondrial sequences of other true seals. J Mol Evol. 1993 Oct;37(4):323–330. doi: 10.1007/BF00178862. [DOI] [PubMed] [Google Scholar]
  3. Arnason U., Gullberg A., Widegren B. The complete nucleotide sequence of the mitochondrial DNA of the fin whale, Balaenoptera physalus. J Mol Evol. 1991 Dec;33(6):556–568. doi: 10.1007/BF02102808. [DOI] [PubMed] [Google Scholar]
  4. Arnason U., Johnsson E. The complete mitochondrial DNA sequence of the harbor seal, Phoca vitulina. J Mol Evol. 1992 Jun;34(6):493–505. doi: 10.1007/BF00160463. [DOI] [PubMed] [Google Scholar]
  5. Baron C., Westhof E., Böck A., Giegé R. Solution structure of selenocysteine-inserting tRNA(Sec) from Escherichia coli. Comparison with canonical tRNA(Ser). J Mol Biol. 1993 May 20;231(2):274–292. doi: 10.1006/jmbi.1993.1282. [DOI] [PubMed] [Google Scholar]
  6. Bruce A. G., Uhlenbeck O. C. Reactions at the termini of tRNA with T4 RNA ligase. Nucleic Acids Res. 1978 Oct;5(10):3665–3677. doi: 10.1093/nar/5.10.3665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ehresmann C., Baudin F., Mougel M., Romby P., Ebel J. P., Ehresmann B. Probing the structure of RNAs in solution. Nucleic Acids Res. 1987 Nov 25;15(22):9109–9128. doi: 10.1093/nar/15.22.9109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hingerty B., Brown R. S., Jack A. Further refinement of the structure of yeast tRNAPhe. J Mol Biol. 1978 Sep 25;124(3):523–534. doi: 10.1016/0022-2836(78)90185-7. [DOI] [PubMed] [Google Scholar]
  9. Horai S., Satta Y., Hayasaka K., Kondo R., Inoue T., Ishida T., Hayashi S., Takahata N. Man's place in Hominoidea revealed by mitochondrial DNA genealogy. J Mol Evol. 1992 Jul;35(1):32–43. doi: 10.1007/BF00160258. [DOI] [PubMed] [Google Scholar]
  10. Janke A., Feldmaier-Fuchs G., Thomas W. K., von Haeseler A., Päbo S. The marsupial mitochondrial genome and the evolution of placental mammals. Genetics. 1994 May;137(1):243–256. doi: 10.1093/genetics/137.1.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kim S. H., Sussman J. L., Suddath F. L., Quigley G. J., McPherson A., Wang A. H., Seeman N. C., RICH A. The general structure of transfer RNA molecules. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4970–4974. doi: 10.1073/pnas.71.12.4970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kumazawa Y., Schwartzbach C. J., Liao H. X., Mizumoto K., Kaziro Y., Miura K., Watanabe K., Spremulli L. L. Interactions of bovine mitochondrial phenylalanyl-tRNA with ribosomes and elongation factors from mitochondria and bacteria. Biochim Biophys Acta. 1991 Oct 8;1090(2):167–172. doi: 10.1016/0167-4781(91)90097-6. [DOI] [PubMed] [Google Scholar]
  13. Peattie D. A., Gilbert W. Chemical probes for higher-order structure in RNA. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4679–4682. doi: 10.1073/pnas.77.8.4679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rich A., Kim S. H. The three-dimensional structure of transfer RNA. Sci Am. 1978 Jan;238(1):52–62. doi: 10.1038/scientificamerican0178-52. [DOI] [PubMed] [Google Scholar]
  15. Rich A., RajBhandary U. L. Transfer RNA: molecular structure, sequence, and properties. Annu Rev Biochem. 1976;45:805–860. doi: 10.1146/annurev.bi.45.070176.004105. [DOI] [PubMed] [Google Scholar]
  16. Romby P., Moras D., Dumas P., Ebel J. P., Giegé R. Comparison of the tertiary structure of yeast tRNA(Asp) and tRNA(Phe) in solution. Chemical modification study of the bases. J Mol Biol. 1987 May 5;195(1):193–204. doi: 10.1016/0022-2836(87)90336-6. [DOI] [PubMed] [Google Scholar]
  17. Sprinzl M., Dank N., Nock S., Schön A. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1991 Apr 25;19 (Suppl):2127–2171. doi: 10.1093/nar/19.suppl.2127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Steinberg S., Cedergren R. Structural compensation in atypical mitochondrial tRNAs. Nat Struct Biol. 1994 Aug;1(8):507–510. doi: 10.1038/nsb0894-507. [DOI] [PubMed] [Google Scholar]
  19. Steinberg S., Gautheret D., Cedergren R. Fitting the structurally diverse animal mitochondrial tRNAs(Ser) to common three-dimensional constraints. J Mol Biol. 1994 Mar 4;236(4):982–989. doi: 10.1016/0022-2836(94)90004-3. [DOI] [PubMed] [Google Scholar]
  20. Steinberg S., Misch A., Sprinzl M. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1993 Jul 1;21(13):3011–3015. doi: 10.1093/nar/21.13.3011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sturchler C., Westhof E., Carbon P., Krol A. Unique secondary and tertiary structural features of the eucaryotic selenocysteine tRNA(Sec). Nucleic Acids Res. 1993 Mar 11;21(5):1073–1079. doi: 10.1093/nar/21.5.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sussman J. L., Holbrook S. R., Warrant R. W., Church G. M., Kim S. H. Crystal structure of yeast phenylalanine transfer RNA. I. Crystallographic refinement. J Mol Biol. 1978 Aug 25;123(4):607–630. doi: 10.1016/0022-2836(78)90209-7. [DOI] [PubMed] [Google Scholar]
  23. Ueda T., Ohta T., Watanabe K. Large scale isolation and some properties of AGY-specific serine tRNA from bovine heart mitochondria. J Biochem. 1985 Nov;98(5):1275–1284. doi: 10.1093/oxfordjournals.jbchem.a135394. [DOI] [PubMed] [Google Scholar]
  24. Wakita K., Watanabe Y., Yokogawa T., Kumazawa Y., Nakamura S., Ueda T., Watanabe K., Nishikawa K. Higher-order structure of bovine mitochondrial tRNA(Phe) lacking the 'conserved' GG and T psi CG sequences as inferred by enzymatic and chemical probing. Nucleic Acids Res. 1994 Feb 11;22(3):347–353. doi: 10.1093/nar/22.3.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Westhof E., Dumas P., Moras D. Crystallographic refinement of yeast aspartic acid transfer RNA. J Mol Biol. 1985 Jul 5;184(1):119–145. doi: 10.1016/0022-2836(85)90048-8. [DOI] [PubMed] [Google Scholar]
  26. Westhof E., Sundaralingam M. Restrained refinement of the monoclinic form of yeast phenylalanine transfer RNA. Temperature factors and dynamics, coordinated waters, and base-pair propeller twist angles. Biochemistry. 1986 Aug 26;25(17):4868–4878. doi: 10.1021/bi00365a022. [DOI] [PubMed] [Google Scholar]
  27. Yokogawa T., Kumazawa Y., Miura K., Watanabe K. Purification and characterization of two serine isoacceptor tRNAs from bovine mitochondria by using a hybridization assay method. Nucleic Acids Res. 1989 Apr 11;17(7):2623–2638. doi: 10.1093/nar/17.7.2623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yokogawa T., Watanabe Y., Kumazawa Y., Ueda T., Hirao I., Miura K., Watanabe K. A novel cloverleaf structure found in mammalian mitochondrial tRNA(Ser) (UCN). Nucleic Acids Res. 1991 Nov 25;19(22):6101–6105. doi: 10.1093/nar/19.22.6101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. de Bruijn M. H., Klug A. A model for the tertiary structure of mammalian mitochondrial transfer RNAs lacking the entire 'dihydrouridine' loop and stem. EMBO J. 1983;2(8):1309–1321. doi: 10.1002/j.1460-2075.1983.tb01586.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES