Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1994 Dec 11;22(24):5484–5491. doi: 10.1093/nar/22.24.5484

NMR investigation of Hoogsteen base pairing in quinoxaline antibiotic--DNA complexes: comparison of 2:1 echinomycin, triostin A and [N-MeCys3,N-MeCys7] TANDEM complexes with DNA oligonucleotides.

K J Addess 1, J Feigon 1
PMCID: PMC332104  PMID: 7816641

Abstract

Hoogsteen base pairs have been demonstrated to occur in base pairs adjacent to the CpG binding sites in complexes of triostin A and echinomycin with a variety of DNA oligonucleotides. To understand the relationship of these unusual base pairs to the sequence specificity of these quinoxaline antibiotics, the conformation of the base pairs flanking the YpR binding sites of the 2:1 drug-DNA complexes of triostin A with [d(ACGTACGT)]2 and of the TpA specific [N-MeCys3, N-MeCys7] TANDEM with [d(ATACGTAT)]2 have been studied by 1H NMR spectroscopy. In both the 2:1 triostin A-DNA complex and the 2:1 [N-MeCys3, N-MeCys7] TANDEM-DNA complex, the terminal A.T base pairs are Hoogsteen base paired with the 5' adenine in the syn conformation. This indicates that both TpA specific and CpG specific quinoxaline antibiotics are capable of inducing Hoogsteen base pairs in DNA. However, in both 2:1 complexes, Hoogsteen base pairing is limited to the terminal base pairs. In the 2:1 triostin A complex, the internal adenines are anti and in the 2:1 [N-MeCys3, N-MeCys7] TANDEM-DNA complex, the internal guanines are anti regardless of pH, which indicates that the central base pairs of both complexes form Watson-Crick base pairs. This indicates that the sequence dependent nature of Hoogsteen base pairing is the same in TpA specific and CpG specific quinoxaline antibiotic-DNA complexes. We have calculated a low resolution three-dimensional structure of the 2triostin A-[d(ACGTACGT)]2 complex and compared it with other CpG specific quinoxaline antibiotic-DNA complexes. The role of stacking in the formation of Hoogsteen base pairs in these complexes is discussed.

Full text

PDF
5484

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Addess K. J., Feigon J. Sequence specificity of quinoxaline antibiotics. 2. NMR studies of the binding of [N-MeCys3,N-MeCys7]TANDEM and triostin A to DNA containing a CpI step. Biochemistry. 1994 Oct 18;33(41):12397–12404. doi: 10.1021/bi00207a006. [DOI] [PubMed] [Google Scholar]
  2. Addess K. J., Gilbert D. E., Olsen R. K., Feigon J. Proton NMR studies of [N-MeCys3,N-MeCys7]TANDEM binding to DNA oligonucleotides: sequence-specific binding at the TpA site. Biochemistry. 1992 Jan 21;31(2):339–350. doi: 10.1021/bi00117a005. [DOI] [PubMed] [Google Scholar]
  3. Addess K. J., Sinsheimer J. S., Feigon J. Solution structure of a complex between [N-MeCys3,N-MeCys7]TANDEM and [d(GATATC)]2. Biochemistry. 1993 Mar 16;32(10):2498–2508. doi: 10.1021/bi00061a006. [DOI] [PubMed] [Google Scholar]
  4. Bishop K. D., Borer P. N., Huang Y. Q., Lane M. J. Actinomycin D induced DNase I hypersensitivity and asymmetric structure transmission in a DNA hexadecamer. Nucleic Acids Res. 1991 Feb 25;19(4):871–875. doi: 10.1093/nar/19.4.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Feigon J., Denny W. A., Leupin W., Kearns D. R. Interactions of antitumor drugs with natural DNA: 1H NMR study of binding mode and kinetics. J Med Chem. 1984 Apr;27(4):450–465. doi: 10.1021/jm00370a007. [DOI] [PubMed] [Google Scholar]
  6. Gallego J., Ortiz A. R., Gago F. A molecular dynamics study of the bis-intercalation complexes of echinomycin with d(ACGT)2 and d(TCGA)2: rationale for sequence-specific Hoogsteen base pairing. J Med Chem. 1993 May 28;36(11):1548–1561. doi: 10.1021/jm00063a005. [DOI] [PubMed] [Google Scholar]
  7. Gao X. L., Patel D. J. Antitumour drug-DNA interactions: NMR studies of echinomycin and chromomycin complexes. Q Rev Biophys. 1989 May;22(2):93–138. doi: 10.1017/s0033583500003814. [DOI] [PubMed] [Google Scholar]
  8. Gao X. L., Patel D. J. NMR studies of echinomycin bisintercalation complexes with d(A1-C2-G3-T4) and d(T1-C2-G3-A4) duplexes in aqueous solution: sequence-dependent formation of Hoogsteen A1.T4 and Watson--Crick T1.A4 base pairs flanking the bisintercalation site. Biochemistry. 1988 Mar 8;27(5):1744–1751. doi: 10.1021/bi00405a054. [DOI] [PubMed] [Google Scholar]
  9. Gilbert D. E., Feigon J. Proton NMR study of the [d(ACGTATACGT)]2-2echinomycin complex: conformational changes between echinomycin binding sites. Nucleic Acids Res. 1992 May 25;20(10):2411–2420. doi: 10.1093/nar/20.10.2411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gilbert D. E., Feigon J. The DNA sequence at echinomycin binding sites determines the structural changes induced by drug binding: NMR studies of echinomycin binding to [d(ACGTACGT)]2 and [d(TCGATCGA)]2. Biochemistry. 1991 Mar 5;30(9):2483–2494. doi: 10.1021/bi00223a027. [DOI] [PubMed] [Google Scholar]
  11. Gilbert D. E., van der Marel G. A., van Boom J. H., Feigon J. Unstable Hoogsteen base pairs adjacent to echinomycin binding sites within a DNA duplex. Proc Natl Acad Sci U S A. 1989 May;86(9):3006–3010. doi: 10.1073/pnas.86.9.3006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kumar A., Ernst R. R., Wüthrich K. A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. Biochem Biophys Res Commun. 1980 Jul 16;95(1):1–6. doi: 10.1016/0006-291x(80)90695-6. [DOI] [PubMed] [Google Scholar]
  13. McLean M. J., Waring M. J. Chemical probes reveal no evidence of Hoogsteen base pairing in complexes formed between echinomycin and DNA in solution. J Mol Recognit. 1988 Jun;1(3):138–151. doi: 10.1002/jmr.300010307. [DOI] [PubMed] [Google Scholar]
  14. Mendel D., Dervan P. B. Hoogsteen base pairs proximal and distal to echinomycin binding sites on DNA. Proc Natl Acad Sci U S A. 1987 Feb;84(4):910–914. doi: 10.1073/pnas.84.4.910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Portugal J., Fox K. R., McLean M. J., Richenberg J. L., Waring M. J. Diethyl pyrocarbonate can detect a modified DNA structure induced by the binding of quinoxaline antibiotics. Nucleic Acids Res. 1988 May 11;16(9):3655–3670. doi: 10.1093/nar/16.9.3655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Quigley G. J., Ughetto G., van der Marel G. A., van Boom J. H., Wang A. H., Rich A. Non-Watson-Crick G.C and A.T base pairs in a DNA-antibiotic complex. Science. 1986 Jun 6;232(4755):1255–1258. doi: 10.1126/science.3704650. [DOI] [PubMed] [Google Scholar]
  17. Sayers E. W., Waring M. J. Footprinting titration studies on the binding of echinomycin to DNA incapable of forming Hoogsteen base pairs. Biochemistry. 1993 Sep 7;32(35):9094–9107. doi: 10.1021/bi00086a014. [DOI] [PubMed] [Google Scholar]
  18. Searle M. S., Wickham G. Hoogsteen versus Watson-Crick A-T basepairing in DNA complexes of a new group of 'quinomycin-like' antibiotics. FEBS Lett. 1990 Oct 15;272(1-2):171–174. doi: 10.1016/0014-5793(90)80476-y. [DOI] [PubMed] [Google Scholar]
  19. Singh U. C., Pattabiraman N., Langridge R., Kollman P. A. Molecular mechanical studies of d(CGTACG)2: complex of triostin A with the middle A - T base pairs in either Hoogsteen or Watson-Crick pairing. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6402–6406. doi: 10.1073/pnas.83.17.6402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ughetto G., Wang A. H., Quigley G. J., van der Marel G. A., van Boom J. H., Rich A. A comparison of the structure of echinomycin and triostin A complexed to a DNA fragment. Nucleic Acids Res. 1985 Apr 11;13(7):2305–2323. doi: 10.1093/nar/13.7.2305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wang A. H., Ughetto G., Quigley G. J., Hakoshima T., van der Marel G. A., van Boom J. H., Rich A. The molecular structure of a DNA-triostin A complex. Science. 1984 Sep 14;225(4667):1115–1121. doi: 10.1126/science.6474168. [DOI] [PubMed] [Google Scholar]
  22. Wang A. H., Ughetto G., Quigley G. J., Rich A. Interactions of quinoxaline antibiotic and DNA: the molecular structure of a triostin A-d(GCGTACGC) complex. J Biomol Struct Dyn. 1986 Dec;4(3):319–342. doi: 10.1080/07391102.1986.10506353. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES