Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1990 Sep 11;18(17):5227–5233. doi: 10.1093/nar/18.17.5227

The immunoglobulin M heavy chain constant region gene of the channel catfish, Ictalurus punctatus: an unusual mRNA splice pattern produces the membrane form of the molecule.

M R Wilson 1, A Marcuz 1, F van Ginkel 1, N W Miller 1, L W Clem 1, D Middleton 1, G W Warr 1
PMCID: PMC332146  PMID: 2119496

Abstract

The immunoglobulin (IgM) heavy chain constant region gene of the channel catfish, Ictalurus punctatus, has been cloned and characterized. The gene contains four constant region domain-encoding exons (CH1 to CH4) expressed in the secreted form of the immunoglobulin, and two exons encoding the transmembrane (TM) domain utilized in the lymphocyte membrane receptor form of the immunoglobulin. The sequence of a cDNA clone encoding the 3' region of the message for the membrane receptor form of the mu chain indicates that the TM1 exon is spliced directly to the CH3 exon, and not into a site within the CH4 exon, as occurs in the mammals, a shark and an amphibian. This unusual pattern of splicing, which produces a membrane heavy chain that is characteristically smaller than the secreted heavy chain, may be common to all teleost fish.

Full text

PDF
5227

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amemiya C. T., Litman G. W. Complete nucleotide sequence of an immunoglobulin heavy-chain gene and analysis of immunoglobulin gene organization in a primitive teleost species. Proc Natl Acad Sci U S A. 1990 Jan;87(2):811–815. doi: 10.1073/pnas.87.2.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blin N., Stafford D. W. A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res. 1976 Sep;3(9):2303–2308. doi: 10.1093/nar/3.9.2303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dahan A., Reynaud C. A., Weill J. C. Nucleotide sequence of the constant region of a chicken mu heavy chain immunoglobulin mRNA. Nucleic Acids Res. 1983 Aug 25;11(16):5381–5389. doi: 10.1093/nar/11.16.5381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Early P., Rogers J., Davis M., Calame K., Bond M., Wall R., Hood L. Two mRNAs can be produced from a single immunoglobulin mu gene by alternative RNA processing pathways. Cell. 1980 Jun;20(2):313–319. doi: 10.1016/0092-8674(80)90617-0. [DOI] [PubMed] [Google Scholar]
  5. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  6. Ghaffari S. H., Lobb C. J. Cloning and sequence analysis of channel catfish heavy chain cDNA indicate phylogenetic diversity within the IgM immunoglobulin family. J Immunol. 1989 Feb 15;142(4):1356–1365. [PubMed] [Google Scholar]
  7. Ghaffari S. H., Lobb C. J. Nucleotide sequence of channel catfish heavy chain cDNA and genomic blot analyses. Implications for the phylogeny of Ig heavy chains. J Immunol. 1989 Oct 15;143(8):2730–2739. [PubMed] [Google Scholar]
  8. Kawakami T., Takahashi N., Honjo T. Complete nucleotide sequence of mouse immunoglobulin mu gene and comparison with other immunoglobulin heavy chain genes. Nucleic Acids Res. 1980 Sep 11;8(17):3933–3945. doi: 10.1093/nar/8.17.3933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kokubu F., Hinds K., Litman R., Shamblott M. J., Litman G. W. Complete structure and organization of immunoglobulin heavy chain constant region genes in a phylogenetically primitive vertebrate. EMBO J. 1988 Jul;7(7):1979–1988. doi: 10.1002/j.1460-2075.1988.tb03036.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lobb C. J., Olson M. O. Immunoglobulin heavy H chain isotypes in a teleost fish. J Immunol. 1988 Aug 15;141(4):1236–1245. [PubMed] [Google Scholar]
  11. McGuire K. L., Duncan W. R., Tucker P. W. Phylogenetic conservation of immunoglobulin heavy chains: direct comparison of hamster and mouse Cmu genes. Nucleic Acids Res. 1985 Aug 12;13(15):5611–5628. doi: 10.1093/nar/13.15.5611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Miller N. W., Bly J. E., van Ginkel F., Ellsaesser C. F., Clem L. W. Phylogeny of lymphocyte heterogeneity: identification and separation of functionally distinct subpopulations of channel catfish lymphocytes with monoclonal antibodies. Dev Comp Immunol. 1987 Fall;11(4):739–747. doi: 10.1016/0145-305x(87)90061-9. [DOI] [PubMed] [Google Scholar]
  13. Miller N. W., Clem L. W. Microsystem for in vitro primary and secondary immunization of channel catfish (Ictalurus punctatus) leukocytes with hapten-carrier conjugates. J Immunol Methods. 1984 Sep 4;72(2):367–379. doi: 10.1016/0022-1759(84)90006-1. [DOI] [PubMed] [Google Scholar]
  14. Moretta L., Moretta A., Canonica G. W., Bacigalupo A., Mingari M. C., Cerottini J. C. Receptors for immunoglobulins on resting and activated human T cells. Immunol Rev. 1981;56:141–162. doi: 10.1111/j.1600-065x.1981.tb01050.x. [DOI] [PubMed] [Google Scholar]
  15. Peterson M. L., Perry R. P. The regulated production of mu m and mu s mRNA is dependent on the relative efficiencies of mu s poly(A) site usage and the c mu 4-to-M1 splice. Mol Cell Biol. 1989 Feb;9(2):726–738. doi: 10.1128/mcb.9.2.726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schwager J., Mikoryak C. A., Steiner L. A. Amino acid sequence of heavy chain from Xenopus laevis IgM deduced from cDNA sequence: implications for evolution of immunoglobulin domains. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2245–2249. doi: 10.1073/pnas.85.7.2245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Warr G. W., DeLuca D., Marchalonis J. J. Phylogenetic origins of immune recognition: lymphocyte surface immunoglobulins in the goldfish, Carassius auratus. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2476–2480. doi: 10.1073/pnas.73.7.2476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Warr G. W., Deluca D., Griffin B. R. Membrane immunoglobulin is present on thymic and splenic lymphocytes of the trout Salmo gairdneri. J Immunol. 1979 Aug;123(2):910–917. [PubMed] [Google Scholar]
  20. Warr G. W., Marchalonis J. J. Lymphocyte surface immunoglobulin of the goldfish differs from its serum counterpart. Dev Comp Immunol. 1977 Jan;1(1):15–22. doi: 10.1016/s0145-305x(77)80046-3. [DOI] [PubMed] [Google Scholar]
  21. Wilson M. R., Middleton D., Alford C., Sullivan J. T., Litman G. W., Warr G. W. Putative immunoglobulin VH genes of the goldfish, Carassius auratus, detected by heterologous cross-hybridization with a murine VH probe. Vet Immunol Immunopathol. 1986 Jun;12(1-4):21–28. doi: 10.1016/0165-2427(86)90106-6. [DOI] [PubMed] [Google Scholar]
  22. Yost C. S., Hedgpeth J., Lingappa V. R. A stop transfer sequence confers predictable transmembrane orientation to a previously secreted protein in cell-free systems. Cell. 1983 Oct;34(3):759–766. doi: 10.1016/0092-8674(83)90532-9. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES