Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1990 Oct 11;18(19):5633–5636. doi: 10.1093/nar/18.19.5633

T7 endonuclease I resolves Holliday junctions formed in vitro by RecA protein.

B Müller 1, C Jones 1, S C West 1
PMCID: PMC332293  PMID: 2216756

Abstract

T7 endonuclease I is known to bind and cleave four-way junctions in DNA. Since these junctions serve as analogues of Holliday junctions that arise during genetic recombination, we have investigated the action of T7 endonuclease I on recombination intermediates containing Holliday junctions. We find that addition of T7 endonuclease I to strand exchange reactions catalysed by RecA protein of Escherichia coli leads to the formation of duplex products that correspond to 'patch' and 'splice' type recombinants. Resolution of the recombination intermediates occurs by the introduction of nicks at the site of the Holliday junction. The recombinant molecules contain 5'-phosphate and 3'-hydroxyl termini which may be ligated to restore the integrity of the DNA.

Full text

PDF
5633

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Center M. S., Studier F. W., Richardson C. C. The structural gene for a T7 endonuclease essential for phage DNA synthesis. Proc Natl Acad Sci U S A. 1970 Jan;65(1):242–248. doi: 10.1073/pnas.65.1.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dickie P., Morgan A. R., McFadden G. Cruciform extrusion in plasmids bearing the replicative intermediate configuration of a poxvirus telomere. J Mol Biol. 1987 Aug 5;196(3):541–558. doi: 10.1016/0022-2836(87)90031-3. [DOI] [PubMed] [Google Scholar]
  3. Kerr C., Sadowski P. D. The involvement of genes 3,4,5 and 6 in genetic recombination in bacteriophage T7. Virology. 1975 May;65(1):281–285. doi: 10.1016/0042-6822(75)90031-8. [DOI] [PubMed] [Google Scholar]
  4. Lee D., Sadowski P. D. Genetic recombination of bacteriophage T7 in vivo studied by use of a simple physical assay. J Virol. 1981 Dec;40(3):839–847. doi: 10.1128/jvi.40.3.839-847.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lee M., Miller R. C., Jr, Scraba D., Paetkau V. The essential role of bacteriophage T7 endonuclease (gene 3) in molecular recombination. J Mol Biol. 1976 Jul 15;104(4):883–888. doi: 10.1016/0022-2836(76)90189-3. [DOI] [PubMed] [Google Scholar]
  6. Müller B., Jones C., Kemper B., West S. C. Enzymatic formation and resolution of Holliday junctions in vitro. Cell. 1990 Jan 26;60(2):329–336. doi: 10.1016/0092-8674(90)90747-3. [DOI] [PubMed] [Google Scholar]
  7. Paetkau V., Langman L., Bradley R., Scraba D., Miller R. C., Jr Folded, concatenated genomes as replication intermediates of bacteriophage T7 DNA. J Virol. 1977 Apr;22(1):130–141. doi: 10.1128/jvi.22.1.130-141.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Panayotatos N., Fontaine A. An endonuclease specific for single-stranded DNA selectively damages the genomic DNA and induces the SOS response. J Biol Chem. 1985 Mar 10;260(5):3173–3177. [PubMed] [Google Scholar]
  9. Parsons C. A., West S. C. Specificity of binding to four-way junctions in DNA by bacteriophage T7 endonuclease I. Nucleic Acids Res. 1990 Aug 11;18(15):4377–4384. doi: 10.1093/nar/18.15.4377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Pham T. T., Coleman J. E. Cloning, expression, and purification of gene 3 endonuclease from bacteriophage T7. Biochemistry. 1985 Sep 24;24(20):5672–5677. doi: 10.1021/bi00341a058. [DOI] [PubMed] [Google Scholar]
  11. Picksley S. M., Parsons C. A., Kemper B., West S. C. Cleavage specificity of bacteriophage T4 endonuclease VII and bacteriophage T7 endonuclease I on synthetic branch migratable Holliday junctions. J Mol Biol. 1990 Apr 20;212(4):723–735. doi: 10.1016/0022-2836(90)90233-C. [DOI] [PubMed] [Google Scholar]
  12. Sadowski P. D. Bacteriophage T7 endonuclease. I. Properties of the enzyme purified from T7 phage-infected Escherichia coli B. J Biol Chem. 1971 Jan 10;246(1):209–216. [PubMed] [Google Scholar]
  13. Tsujimoto Y., Ogawa H. Intermediates in genetic recombination of bacteriophage T7 DNA. Biological activity and the roles of gene 3 and gene 5. J Mol Biol. 1978 Nov 5;125(3):255–273. doi: 10.1016/0022-2836(78)90402-3. [DOI] [PubMed] [Google Scholar]
  14. West S. C., Cassuto E., Howard-Flanders P. Postreplication repair in E. coli: strand exchange reactions of gapped DNA by RecA protein. Mol Gen Genet. 1982;187(2):209–217. doi: 10.1007/BF00331119. [DOI] [PubMed] [Google Scholar]
  15. West S. C., Cassuto E., Howard-Flanders P. Role of SSB protein in RecA promoted branch migration reactions. Mol Gen Genet. 1982;186(3):333–338. doi: 10.1007/BF00729451. [DOI] [PubMed] [Google Scholar]
  16. West S. C., Countryman J. K., Howard-Flanders P. Enzymatic formation of biparental figure-eight molecules from plasmid DNA and their resolution in E. coli. Cell. 1983 Mar;32(3):817–829. doi: 10.1016/0092-8674(83)90068-5. [DOI] [PubMed] [Google Scholar]
  17. West S. C., Howard-Flanders P. Duplex-duplex interactions catalyzed by RecA protein allow strand exchanges to pass double-strand breaks in DNA. Cell. 1984 Jun;37(2):683–691. doi: 10.1016/0092-8674(84)90401-x. [DOI] [PubMed] [Google Scholar]
  18. de Massy B., Studier F. W., Dorgai L., Appelbaum E., Weisberg R. A. Enzymes and sites of genetic recombination: studies with gene-3 endonuclease of phage T7 and with site-affinity mutants of phage lambda. Cold Spring Harb Symp Quant Biol. 1984;49:715–726. doi: 10.1101/sqb.1984.049.01.081. [DOI] [PubMed] [Google Scholar]
  19. de Massy B., Weisberg R. A., Studier F. W. Gene 3 endonuclease of bacteriophage T7 resolves conformationally branched structures in double-stranded DNA. J Mol Biol. 1987 Jan 20;193(2):359–376. doi: 10.1016/0022-2836(87)90224-5. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES