Skip to main content
BMC Genomics logoLink to BMC Genomics
. 2012 Mar 27;13:116. doi: 10.1186/1471-2164-13-116

Annotation of primate miRNAs by high throughput sequencing of small RNA libraries

Michael Dannemann 1,, Birgit Nickel 1, Esther Lizano 1,2, Hernán A Burbano 1,3,#, Janet Kelso 1,✉,#
PMCID: PMC3328248  PMID: 22453055

Abstract

Background

In addition to genome sequencing, accurate functional annotation of genomes is required in order to carry out comparative and evolutionary analyses between species. Among primates, the human genome is the most extensively annotated. Human miRNA gene annotation is based on multiple lines of evidence including evidence for expression as well as prediction of the characteristic hairpin structure. In contrast, most miRNA genes in non-human primates are annotated based on homology without any expression evidence. We have sequenced small-RNA libraries from chimpanzee, gorilla, orangutan and rhesus macaque from multiple individuals and tissues. Using patterns of miRNA expression in conjunction with a model of miRNA biogenesis we used these high-throughput sequencing data to identify novel miRNAs in non-human primates.

Results

We predicted 47 new miRNAs in chimpanzee, 240 in gorilla, 55 in orangutan and 47 in rhesus macaque. The algorithm we used was able to predict 64% of the previously known miRNAs in chimpanzee, 94% in gorilla, 61% in orangutan and 71% in rhesus macaque. We therefore added evidence for expression in between one and five tissues to miRNAs that were previously annotated based only on homology to human miRNAs. We increased from 60 to 175 the number miRNAs that are located in orthologous regions in humans and the four non-human primate species studied here.

Conclusions

In this study we provide expression evidence for homology-based annotated miRNAs and predict de novo miRNAs in four non-human primate species. We increased the number of annotated miRNA genes and provided evidence for their expression in four non-human primates. Similar approaches using different individuals and tissues would improve annotation in non-human primates and allow for further comparative studies in the future.

Background

From a comparative genomics standpoint the great apes are among the most studied groups of organisms [1]. Since the completion of human genome sequencing in 2001 [2,3] the genomes of all species belonging to this family have been or are being sequenced [4,5]. Although only the human reference genome is considered of finished quality [2,3], it is possible to compare and also use these genomes sequences as references for the alignment of reads generated in sequencing and gene expression studies. In addition to determine the DNA sequence of a genome, it is of particular importance to attach biological information to it e.g. determine the location and structure of protein-coding genes. Gene annotation is carried out both computationally and experimentally by sequencing cDNA e.g. traditionally using expressed sequence tags (ESTs) [6,7] and more recently RNA-seq [8]. Human EST resources are also more abundant than their non-human counterparts and therefore human gene annotation is also the most accurate among great apes [9]. While the majority of efforts have focused on the annotation of protein-coding genes, the discovery of large-scale transcription outside of protein-coding genes [10,11] has led to the identification of a great diversity of non-protein-coding RNA genes [12]. Among these are the microRNAs (miRNAs) which are short (~22 bp) RNA molecules [13] that post-transcriptionally down-regulate protein-coding gene expression [14,15]. The official repository of miRNAs miRBase (v.17) [16,17] contains 1,424 human miRNA, whereas fewer miRNAs are annotated in other primate genomes (chimpanzee: 600; bonobo: 88; gorilla: 85; orangutan: 581; rhesus macaque: 479), a fact that is explained by the larger number of human studies.

MiRNAs have been annotated in humans using a mixture of bioinformatics prediction and cDNA sequencing [18]. The identification of miRNAs in non-human primates has made use of a number of comparative methodologies such as sequence homology between closely related organisms [19-22], the genomic search for RNA secondary structure patterns characteristic of miRNAs [23] and by direct sequencing of small RNA libraries [24,25]. However, direct characterization of small RNA libraries by high throughput sequencing has been performed for a limited number of tissues in only chimpanzees and rhesus macaques[24,25]. As a result the majority of non-human primate miRNAs in miRBase have no evidence for their expression and their existence is only supported by computational prediction. In the present study we sequenced small RNA libraries from multiple chimpanzee, gorilla, orangutan and rhesus macaque individuals and tissues using the Illumina high throughput sequencing platform. We applied an algorithm (miRDeep) that uses sequencing reads in conjunction with a model of miRNA biogenesis to predict miRNAs with high accuracy[26,27].

Results

MiRNA prediction

We used the program miRDeep2 [27] to predict miRNAs from sequenced small RNAs. miRDeep2 takes as input the position and frequency of reads aligned to the genome ("signature") with respect to a putative RNA hairpin and scores the miRNA candidate employing a probabilistic model based on miRNA biogenesis [26]. The score produced by miRDeep takes into account the energetic stability of the putative hairpin and the compatibility of the observed read distribution with miRNA cleavage [26]. The more positive the score the more reliable the prediction. Additionally, miRDeep2 calculates false-positive rates by running the algorithm on a set of "signatures" and secondary structures that are paired by random permutation. Using predictions with a positive score and a significant folding p-value we identified from our sequences 47 (22 with expression evidence for star sequence) new miRNAs in chimpanzee, 240 (166 with expression evidence for star sequence) in gorilla, 55 (13 with expression evidence for star sequence) in orangutan and 47 (24 with expression evidence for star sequence) in rhesus macaque. miRDeep2 was able to predict 338 (64% of all annotated) known miRNAs (312 with a positive score) in chimpanzee, 75 (94% of all annotated, 73 with a positive score) in gorilla, 364 (61% of all annotated, 325 with a positive score) in orangutan and 348 (71% of all annotated, 312 with a positive score) in rhesus macaque (Figure 1). miRDeep2 performance statistics were similar to the ones reported in other species [27] (Figure 1).

Figure 1.

Figure 1

Expression of annotated and novel miRNAs for the four primate species. Column 1 illustrates the number of annotated miRBase (version 17) miRNAs. Columns 2-6 contain the number of expressed annotated (black) and novel (red) miRNAs for each separate tissue and column 7 for the union of all tissues. Columns 8-11 show miRDeep2 statistics and column 12 the number of miRNAs miRDeep2 defined as expressed and calculated its summary statistics on.

MiRNAs show high expression conservation between species, and tissue-specific expression patterns [28,29]. In testis we found a lower fraction of the total reads align to miRNAs (Table 1) as a result of the expression of an additional class of small-RNAs in this tissue - piRNAs [29]. We were able to identify 11 tissue-specific miRNAs in chimpanzee (7 in brain, 1 in heart, 2 in kidney, 1 in testis), 110 in gorilla (100 in brain, 10 in liver), 28 in orangutan (25 in brain, 3 in liver) and 21 in rhesus macaque (11 in brain, 10 in testis).

Table 1.

Samples' read alignment information.

Individual Tissue Genome miRBase miRNAs Predictions Unknown Total reads
Chimp 1 Brain 42.3 78.8 2.9 18.3 12211879
Chimp 2 Brain 54.3 90 2.2 7.7 11658357
Chimp 3 Brain 54.8 73.5 2.4 24.2 8627942
Chimp 4 Brain 52.5 88.1 2.3 9.6 10381037
Chimp 5 Brain 18.7 79.4 2.2 18.4 13977547
Chimp 1 Liver 57.4 92.3 1.1 6.6 8262666
Chimp 2 Liver 63.9 89.3 0.9 9.8 8088806
Chimp 3 Liver 51.7 88.1 0.9 11 11017642
Chimp 4 Liver 52.3 93.8 1.1 5.1 10449677
Chimp 5 Liver 29.9 57.5 0.5 41.9 16283995
Chimp 2 Testis 49.1 4.2 1.6 94.2 11361816
Chimp 3 Testis 63 5.8 2.1 92 8899032
Chimp 4 Testis 40.7 8.6 3.4 88 11965804
Chimp 5 Testis 43.2 5.8 2.1 92.1 11875495
Chimp 6 Testis 51.3 6.8 4 89.2 11166737
Chimp 1 Kidney 60.3 91 2.8 6.2 9702033
Chimp 2 Kidney 44.5 83.3 2.8 13.9 7774225
Chimp 3 Kidney 61.6 86.4 3.4 10.2 10250184
Chimp 5 Kidney 57.9 83.4 3.6 12.9 10264521
Chimp 1 Heart 63.2 94.7 2.2 3.1 7818504
Chimp 2 Heart 63.6 96.4 1.5 2 8644295
Chimp 3 Heart 65.4 95.3 1.1 3.6 9426585
Chimp 4 Heart 61.3 88 1.6 10.5 9449302
Chimp 5 Heart 60.8 88 1.3 10.7 9124991
Rhesus 1 Brain 36.1 72.3 4.8 23 12946219
Rhesus 2 Brain 38 81.8 4.5 13.7 12258382
Rhesus 3 Brain 47.5 82.3 5.6 12.1 11623674
Rhesus 4 Brain 44.9 90.6 3.6 5.8 11490940
Rhesus 5 Brain 48.9 88.4 3.8 7.8 10898842
Rhesus 1 Liver 51.4 93.4 1.3 5.4 8615049
Rhesus 2 Liver 58.2 95.1 1.1 3.8 8617533
Rhesus 3 Liver 54.7 95 2 3 9668109
Rhesus 4 Liver 45.6 94.6 1.8 3.7 10620490
Rhesus 5 Liver 34.5 90.6 1.9 7.5 10750399
Rhesus 1 Testis 44.4 36.3 1.1 62.5 12068068
Rhesus 2 Testis 25.7 40.2 2.7 57 14533174
Rhesus 3 Testis 47 29.9 1.1 69.1 11467601
Rhesus 4 Testis 50.5 15.2 0.4 84.3 10760301
Rhesus 1 Kidney 39.5 59.4 1.3 39.2 10730625
Rhesus 2 Kidney 52.4 87.9 2.4 9.6 12158274
Rhesus 3 Kidney 58.5 86.5 2.8 10.7 10683932
Rhesus 4 Kidney 55.8 81.5 2.3 16.2 10704780
Rhesus 6 Kidney 57.8 86.3 2.4 11.3 10530708
Rhesus 1 Heart 57.8 92.9 1.1 5.9 9116454
Rhesus 2 Heart 24.8 52.9 0.6 46.5 19394080
Rhesus 3 Heart 61.9 96.7 0.8 2.5 9093491
Rhesus 4 Heart 57.8 90.8 1.2 8 9824696
Rhesus 5 Heart 66.8 95 1.1 3.9 9018713
Orang 1 Brain 42.5 78.6 0.6 20.8 11307562
Orang 2 Brain 40.7 64.7 0.2 35 11449064
Orang 3 Liver 53.4 91.7 0.2 8.1 7111233
Orang 4 Liver 38.8 91.3 0.1 8.5 10302589
Gorilla 1 Brain 41.5 6.7 56.4 37 11931502
Gorilla 2 Brain 37.6 3.2 32.6 64.3 9534826
Gorilla 3 Liver 35 1.8 72.8 25.4 12400172
Gorilla 4 Liver 38.8 2.4 61.2 36.4 12018826

Column 1: individual information; column 2: tissue; column 3: fraction of reads that could be mapped perfectly to species corresponding genome; columns 4-6 are based on the reads that could be mapped to the corresponding species genome and contain how many of these reads could be aligned to known miRNAs (column 4), newly predicted miRNAs (column 5) and to neither of these 2 categories (column 6); column 7: total number of sequenced reads.

To identify miRNAs which are shared between all the primates studied here we examined miRNAs that are encoded in orthologous locations in all four primate species and in human. For the miRNAs present in miRBase (v.17) we found 60 miRNAs that are located in orthologous regions in human and the four non-human primate species. When we included the set of miRNAs predicted in this study we increased this number to 175 miRNAs. This set of miRNAs can be considered prediction of high confidence since they were known in human and either known or predicted by us in all other four primate species.

Sequence identity

All 60 of the known miRNAs present in all four species and human showed a high sequence identity i.e. the sequence is completely identical between the mature sequences for all of them. Using the set of 175 miRNAs we were able to reconstruct the expected phylogenetic relationships between the species studied for both the hairpin and the mature sequence. A principle component analysis on the sequence identity between hairpin sequences (Figure 2) shows a close relationship between chimpanzee and gorilla while both species are distant from orangutan and even more afar to rhesus macaque.

Figure 2.

Figure 2

Principle Component Analysis (PCA) using sequence similarity between mature (above) and hairpin (below) sequences. The plots show the first two components of the corresponding PCAs and the amount of variance explained by each component.

Secondary structure

For some stages during their biogenesis miRNAs form a secondary structure that resembles a hairpin [30]. Since the endonuclease that processes miRNAs recognizes them based on their three-dimensional structure [30], the stability of the secondary structure can be considered a proxy for miRNA functionality and therefore for the reliability of miRNAs predictions. We used the minimum free energy (MFE) as a measure of structure stability. We found that the hairpins of predicted miRNAs are as stable as hairpins from known miRNAs, which is not unexpected given that the score calculated by miRDeep2 takes into account the stability of the miRNA hairpin secondary structure.

Discussion

Although the genomes of multiple non-human primates have been sequenced, the functional annotation of the human genome remains the most complete among primates. This is the case for miRNAs annotated in miRBase, where the number of human miRNAs is double than miRNAs annotated in chimpanzee (the second-best annotated genome) [16,17]. In the present study we sequenced small RNA libraries from multiple individuals and tissues in four non-human primates in order to identify from expression data new miRNA genes. We identified these new miRNAs using miRDeep2 [27], which uses a model for miRNA precursor processing by Dicer to score miRNA predictions. Using this approach we predicted 47 new miRNAs in chimpanzee, 240 in gorilla, 55 in orangutan and 47 in rhesus macaque (Figure 1). We found that the secondary structures from our new miRNAs were as stable as miRNAs previously described in miRBase.

A similar number of new miRNAs were identified in chimpanzee, orangutan and rhesus macaque, whereas the number of new miRNA predictions in gorilla was much higher. While the genomes of the chimpanzee, orangutan and rhesus have been available for some time, and a number of miRNA studies in these species published, the gorilla genome has not yet been published and fully annotated [4,5,31], and no published description of miRNAs in gorilla - a requirement for inclusion of new miRNAs in miRBase - exists The majority of annotated miRNAs in the non-human primates are based on homology with human miRNAs [20-22]. However, the presence of a given locus in a genome is not a guarantee of its expression. We have, in this study, provided evidence of expression for 51% of the homology-based annotated miRNAs in gorilla, 49% in chimpanzee and 60% in rhesus macaque. We increased from 60 to 175 the number of miRNAs, which are located in orthologous regions in the four non-human primate genomes studied here and in human. This is a set of high confidence miRNAs based on homology, expression and miRNA biogenesis signatures.

In addition to the analysis of expression and folding, miRDeep incorporates a model of miRNA biogenesis, which makes its predictions more accurate than other software [27]. While the sequencing of small RNA libraries is now technically feasible, the accurate identification of novel miRNAs remains challenging. A pioneer study in primates sequenced small RNAs libraries from human and chimpanzee brains [24]. They predicted a large number (268 in human and 257 in chimpanzee) of new miRNAs in both species based on small RNA sequencing. Only few of these miRNAs have been included in miRBase, the public, curated repository for miRNAs (49 in human and 19 in chimpanzee). It is important to identify novel miRNAs accurately, and therefore particularly important to take into account the effect of genome quality and completeness on the ability to determine whether particular miRNAs are species-specific In primate comparisons the higher quality and completeness of the human genome means that miRNAs are frequently described as human-specific when in fact they are simply missed in related primate genomes due to sequence quality issues.

We sought to identify miRNAs that are expressed in tissue-specific manner. For species where we had samples from five tissues (chimpanzee and rhesus) we could say with more confidence that a given miRNA is tissue-specific than for the species where we had only two tissues (orangutan and gorilla). Brain was the tissue with both more miRNAs in total, and more tissue-specific miRNAs both in chimpanzee and marginally in rhesus. In orangutan and gorilla we could only identify miRNAs that are expressed mutually exclusively in either liver or brain. We found more miRNAs expressed exclusively in brain than in liver. This is in agreement with the fact that the miRNA repertoire in humans, chimpanzees and rhesus macaques is more diverse in brain compared to other tissues [29].

Conclusion

We have sequenced small RNA libraries from multiple individuals and tissues from chimpanzee, gorilla, orangutan and rhesus macaque. We identified known miRNAs and used miRDeep2 to predict de novo microRNAs in these four primate species. Our new expression-based predictions increased the number of known miRNAs in all four species. In addition, we showed the first expression evidence for miRNAs that were previously only annotated by sequence homology with humans. Accurate annotation of miRNAs in multiple primate species provides a fundamental to carry out evolutionary, comparative and functional studies of miRNAs.

Methods

MiRNA samples

We sequenced 56 small RNA libraries (24 from chimpanzees, 24 from rhesus macaques, four from orangutan and four from gorilla). The chimpanzee and rhesus macaque samples have been published [29]. We added to this set eight samples from orangutan and gorilla (four liver and four brain samples from each species). All the individuals used in this study were adults and suffered sudden death that did not involve the tissues sampled. A description of the samples is available in Table 1.

Library preparation and sequencing

We used the individuals presented in [29] including 24 chimpanzee and rhesus macaque samples. Additionally, we sequenced four gorilla and four orangutan samples from brain and liver (two from each species and tissue). Total RNA was prepared as described in the Illumina Inc. manual "Small RNA Sample Preparation Guide" (Part # 1004239 Rev. A Illumina Inc. San Diego). Illumina Genome Analyzer I and II sequencing runs were analyzed starting from raw intensities. A detailed summary about the platform each sample was sequenced on, how many cycles and which chemistry was used can be found in Table 2. Base calling and quality score calculation was performed for all runs using the IBIS base caller [32].

Table 2.

Sequencing information.

Individual Tissue Sex Platform Chemistry Cycles
Orang 1 Brain Male GA 1 V2 26
Orang 2 Brain Female GA 1 V2 36
Orang 3 Liver Male GA 2 V1 26
Orang 4 Liver Male GA 1 V1 36
Gorilla 1 Brain Female GA 1 V2 26
Gorilla 2 Brain Female GA 1 V2 36
Gorilla 3 Liver Female GA 2 V1 26
Gorilla 4 Liver Female GA 1 V1 36

Sample composition and read annotation

Read alignments were performed using PatMaN [33] allowing no mismatches. We mapped reads against miRBase [16,17] version 17 and the corresponding species genomes - chimpanzee (panTro3), rhesus macaque (rheMac2), orangutan (ponAbe2) and the draft genome of gorilla (gorGor3).

Sequence data

MiRNA data was uploaded to the European Nucleotide Archive hosted by the European Bioinformatics Institute with the study accession number ERP000973 and ArrayExpress with accession number E-MTAB-828.

MiRNAs prediction

We used miRDeep2 prediction algorithm [27]. All reads from each species were used for the corresponding predictions. We excluded redundant predictions for the same genomic location and only kept the prediction with the highest score. We used the mapper module (mapper.pl) provided by miRDeep2 with the following parameters: -n -d -c -i -j -l 18 -m -k TCGTATGCCGTCTTCTGCTTG. We ran miRDeep2 with default parameters. Newly predicted miRNAs that were found in orthologous genomic regions in all four species were submitted to miRBase. Names were assigned by miRBase and are available in Table 3.

Table 3.

Novel miRNAs

species miRBase id mature sequence chromosome miRDeep2 score
chimpanzee ptr-mir-4423 AUAGGCACCAAAAAGCAACAA 1 24.7
chimpanzee ptr-mir-3121 UAAAUAGAGUAGGCAAAGGACA 1 25919
chimpanzee ptr-mir-3117 AUAGGACUCAUAUAGUGCCAGG 1 4.2
chimpanzee ptr-mir-4742 UCAGGCAAAGGGAUAUUUACAGA 1 4.7
chimpanzee ptr-mir-4428 CAAGGAGACGGGAACAUGGAGCC 1 5.2
chimpanzee ptr-mir-4654 UGUGGGAUCUGGAGGCAUCUGGG 1 5.7
chimpanzee ptr-mir-92b UAUUGCACUCGUCCCGGCCUCC 1 9795.4
chimpanzee ptr-mir-3127 AUCAGGGCUUGUGGAAUGGGAAG 2A 103.7
chimpanzee ptr-mir-3132 UGGGUAGAGAAGGAGCUCAGA 2B 5.5
chimpanzee ptr-mir-3129 GCAGUAGUGUAGAGAUUGGU 2B 92.4
chimpanzee ptr-mir-378b ACUGGACUUGGAGGCAGAAA 3 5.2
chimpanzee ptr-mir-4446 CAGGGCUGGCAGUGAGAUGGG 3 5.3
chimpanzee ptr-mir-3136 CUGACUGAAUAGGUAGGGUCA 3 5.5
chimpanzee ptr-mir-3138 ACAGUGAGGUAGAGGGAGUG 4 148.4
chimpanzee ptr-mir-3660 ACUGACAGGAGAGCGUUUUGA 5 120.4
chimpanzee ptr-mir-378e ACUGGACUUGGAGUCAGG 5 5
chimpanzee ptr-mir-449c AGGCAGUGUAUUGCUAGCGGCUGU 5 5.4
chimpanzee ptr-mir-3943 UAGCCCCCAGGCUUCACUUGGCG 7 47.7
chimpanzee ptr-mir-4660 UGCAGCUCUGGUGGAAAAUGGA 8 45124
chimpanzee ptr-mir-3151 GGUGGGGCAAUGGGAUCAGGUG 8 500.7
chimpanzee ptr-mir-3149 UUUGUAUGGAUAUGUGUGUGUA 8 5.3
chimpanzee ptr-mir-4667 ACUGGGGAGCAGAAGGAGAACC 9 5.5
chimpanzee ptr-mir-548e AAAAACUGCGACUACUUUUG 10 5.4
chimpanzee ptr-mir-3664 UCAGGAGUAAAGACAGAGU 11 5.6
chimpanzee ptr-mir-1260b AUCCCACCACUGCCACCAU 11 5.8
chimpanzee ptr-mir-3165 AGGUGGAUGCAAUGUGACCUCA 11 5.9
chimpanzee ptr-mir-1252 AGAAGGAAGUUGAAUUCAUU 12 4.6
chimpanzee ptr-mir-200c UAAUACUGCCGGGUAAUGAUGGA 12 5.8
chimpanzee ptr-mir-655 AUAAUACAUGGUUAACCUCUU 14 246.1
chimpanzee ptr-mir-3173 AAAGGAGGAAAUAGGCAGGCCA 14 344.5
chimpanzee ptr-mir-2392 UAGGAUGGGGGUGAGAGGUG 14 5
chimpanzee ptr-mir-4504 UGUGACAAUAGAGAUGAACAUGG 14 5.8
chimpanzee ptr-mir-4510 UGAGGGAGUAGGAUGUAUGGU 15 4.2
chimpanzee ptr-mir-4524a UGAGACAGGCUUAUGCUGCUA 17 195.8
chimpanzee ptr-mir-4743 UGGCCGGAUGGGACAGGAGGCA 18 5.4
chimpanzee ptr-mir-320e AAAAGCUGGGUUGAGAAGGUGA 19 4.5
chimpanzee ptr-mir-548o AAAAGUAAUUGCGGUUUUUGCC 20 105.8
chimpanzee ptr-mir-3193 CUCCUGCGUAGGAUCUGAGGAG 20 4.7
chimpanzee ptr-mir-3192 UCUGGGAGGUUGUAGCAGUGGA 20 5
chimpanzee ptr-mir-3200 CACCUUGCGCUACUCAGGUCUG 22 270.9
chimpanzee ptr-mir-23c AUCACAUUGCCAGUGAUUACCC X 4.4
chimpanzee ptr-mir-2114 CGAGCCUCAAGCAAGGGACUUCA X 50.6
chimpanzee ptr-mir-767 UGCACCAUGGUUGUCUGAGCA X 5.3
chimpanzee ptr-mir-4536 UGUGGUAGAUAUAUGCACGA X 5.3
chimpanzee ptr-mir-222 AGCUACAUCUGGCUACUGGGUC X 5.6
chimpanzee ptr-mir-3937 ACAGGCGGCUGUAGCAAUGGGGGG X 6.1
chimpanzee ptr-mir-676 CUGUCCUAAGGUUGUUGAGU X 79.5

gorilla ggo-mir-135b UAUGGCUUUUCAUUCCUAUGUGA 1 10.3
gorilla ggo-mir-3605 GAUGAGGAUGGAUAGCAAGGAAG 1 1.1
gorilla ggo-mir-29c UAGCACCAUUUGAAAUCGGUUA 1 11813.8
gorilla ggo-mir-197 UUCACCACCUUCUCCACCCAGC 1 119.9
gorilla ggo-mir-92b UAUUACACUCGUCCCGGCCUCC 1 1589.6
gorilla ggo-mir-30e UGUAAACAUCCUUGACUGGAAGC 1 3114.3
gorilla ggo-mir-556 AUAUUACCAUUAGCUCAUCU 1 36.8
gorilla ggo-mir-488 CCCAGAUAAUGGCACUCUCAA 1 4.7
gorilla ggo-mir-320b AGAAGCUGGGUUGAGAGGGCAA 1 5
gorilla ggo-mir-190b UGAUAUGUUUGAUAUUGGGUUG 1 5.1
gorilla ggo-mir-429 UAAUACUGUCUGGUAAAACCG 1 5.3
gorilla ggo-mir-760 CGGCUCUGGGUCUGUGGGGAG 1 5.4
gorilla ggo-mir-1278 UAGUACUGUGCAUAUCAUCUA 1 5.6
gorilla ggo-mir-551a GCGACCCACUCUUGGUUUCCA 1 83
gorilla ggo-mir-200b UAAUACUGCCUGGUAAUGAUGAC 1 86.9
gorilla ggo-mir-200a UAACACUGUCUGGUAACGAUGU 1 99.7
gorilla ggo-mir-4429 AAAAGCUGGGCUGAGAGGCGA 2A 1
gorilla ggo-mir-3126 UGAGGGACAGAUGCCAGAAGCA 2A 5.3
gorilla ggo-mir-1301 UUGCAGCUGCCUGGGAGUGACU 2A 5.5
gorilla ggo-mir-3127 AUCAGGGCUUGUGGAAUGGGA 2A 5.6
gorilla ggo-mir-26b UUCAAGUAAUUCAGGAUAGGU 2B 15749.2
gorilla ggo-mir-375 UUUGUUCGUUCGGCUCGCGUGA 2B 1.7
gorilla ggo-mir-128 UCACAGUGAACCGGUCUCUU 2B 22571.1
gorilla ggo-mir-149 UCUGGCUCCGUGUCUUCACUCCC 2B 357.8
gorilla ggo-mir-3129 GCAGUAGUGUAGAGAUUGGU 2B 4
gorilla ggo-mir-191 CAACGGAAUCCCAAAAGCAGC 3 13047.6
gorilla ggo-let-7g UGAGGUAGUAGUUUGUACAGU 3 134084.7
gorilla ggo-mir-3923 AACUAGUAAUGUUGGAUUAGGGC 3 1.5
gorilla ggo-mir-28 CACUAGAUUGUGAGCUCCUGGA 3 -4.8
gorilla ggo-mir-4446 CAGGGCUGGCAGUGAGAUGGG 3 5.2
gorilla ggo-mir-378b ACUGGACUUGGAGGCAGAAAG 3 5.2
gorilla ggo-mir-885 AGGCAGCGGGGUGUAGUGGA 3 5.7
gorilla ggo-mir-551b GCGACCCAUACUUGGUUUCAG 3 74.8
gorilla ggo-mir-1255a AGGAUGAGCAAAGAAAGUAGAU 4 122.2
gorilla ggo-mir-548d CAAAAACUGCAGUUACUUUUG 4 17.8
gorilla ggo-mir-577 AUAGAUAAAAUAUUGGUACCUG 4 1.8
gorilla ggo-mir-3138 ACAGUGAGGUAGAGGGAGUG 4 2.3
gorilla ggo-mir-574 CACGCUCAUGCACACACCCACA 4 510.5
gorilla ggo-mir-378e ACUGGACUUGGAGUCAGGAC 5 0.5
gorilla ggo-mir-3615 UCUCUCCGCUCCUCGCGGCUCGC 5 11.9
gorilla ggo-mir-423 UGAGGGGCAGAGAGCGAGACUU 5 12767.2
gorilla ggo-mir-4524a UGAGACAGGCUUAUGCUGCUA 5 150
gorilla ggo-mir-338 UCCAGCAUCAGUGAUUUUGUUGA 5 1509.7
gorilla ggo-mir-193a AACUGGCCUACAAAGUCCCAG 5 1740.8
gorilla ggo-mir-1180 UUUCCGGCUCGCGUGGGUGUG 5 1.9
gorilla ggo-mir-144 GGAUAUCAUCAUAUACUGUAAG 5 245.3
gorilla ggo-mir-454 UAGUGCAAUAUUGCUUAUAGGGUU 5 4.9
gorilla ggo-mir-152 UCAGUGCAUGACAGAACUUGG 5 5070.4
gorilla ggo-mir-146a UGAGAACUGAAUUCCAUGGGU 5 5.2
gorilla ggo-mir-874 CUGCCCUGGCCCGAGGGACCGA 5 526.7
gorilla ggo-mir-142 CCCAUAAAGUAGAAAGCACUA 5 5.3
gorilla ggo-mir-1250 ACGGUGCUGGAUGUGGCCUU 5 5.4
gorilla ggo-mir-4738 UGAAACUGGAGCGCCUGGAG 5 5.5
gorilla ggo-mir-584 UUAUGGUUUGCCUGGGACUGA 5 5.8
gorilla ggo-mir-1271 CUUGGCACCUAGCAAGCACUCA 5 58.5
gorilla ggo-mir-378 ACUGGACUUGGAGUCAGAAGGCC 5 7592.3
gorilla ggo-mir-340 UUAUAAAGCAAUGAGACUGAU 5 8919.2
gorilla ggo-mir-877 GUAGAGGAGAUGGCGCAGGGGACA 6 1.5
gorilla ggo-mir-30c UGUAAACAUCCUACACUCUCAGC 6 1740.7
gorilla ggo-mir-548b CAAAAACCUCAGUUGCUUUUG 6 17.9
gorilla ggo-mir-548a AAAAGUAAUUGUGGUUUUUGC 6 30.4
gorilla ggo-mir-133b UUUGGUCCCCUUCAACCAGC 6 4
gorilla ggo-mir-206 UGGAAUGUAAGGAAGUGUGUGG 6 5.4
gorilla ggo-mir-1273c GGCGACAAAACGAGACCCUG 6 8.4
gorilla ggo-mir-671 UCCGGUUCUCAGGGCUCCACC 7 24.5
gorilla ggo-mir-3943 UAGCCCCCAGGCUUCACUUGGCG 7 34
gorilla ggo-mir-148a UCAGUGCACUACAGAACUUUG 7 3957.5
gorilla ggo-mir-339 UGAGCGCCUCGACGACAGAGCCG 7 429.6
gorilla ggo-mir-592 UUGUGUCAAUAUGCGAUGAUG 7 45.6
gorilla ggo-mir-548f CAAAAGUGAUCGUGGUUUUUG 7 4.6
gorilla ggo-mir-589 UGAGAACCACGUCUGCUCUGA 7 5.3
gorilla ggo-mir-182 UUUGGCAAUGGUAGAACUCACA 7 5.4
gorilla ggo-mir-590 GAGCUUAUUCAUAAAAGUGCAG 7 57.4
gorilla ggo-mir-490 CAACCUGGAGGACUCCAUGCUG 7 73.8
gorilla ggo-mir-335 UCAAGAGCAAUAACGAAAAAUG 7 785.9
gorilla ggo-mir-486 UCCUGUACUGAGCUGCCCCGAG 8 1100
gorilla ggo-mir-383 AGAUCAGAAGGUGAUUGUGGC 8 1642.2
gorilla ggo-mir-3151 GGUGGGGCAAUGGGAUCAGGUG 8 18.3
gorilla ggo-mir-598 UACGUCAUCGUUGUCAUCGUCA 8 5151.1
gorilla ggo-mir-4660 UGCAGCUCUGGUGGAAAAUGGA 8 5.2
gorilla ggo-mir-320a AAAAGCUGGGUUGAGAGGGCGA 8 5.5
gorilla ggo-mir-151a UCGAGGAGCUCACAGUCUAG 8 5.6
gorilla ggo-mir-455 GCAGUCCAUGGGCAUAUACAC 9 1166.5
gorilla ggo-let-7f UGAGGUAGUAGAUUGUAUAGU 9 1167727.6
gorilla ggo-mir-873 GCAGGAACUUGUGAGUCUCC 9 197.5
gorilla ggo-mir-27b UUCACAGUGGCUAAGUUCUGC 9 2594.1
gorilla ggo-mir-23b AUCACAUUGCCAGGGAUUACCA 9 5
gorilla ggo-mir-3927 CAGGUAGAUAUUUGAUAGGCA 9 6
gorilla ggo-mir-491 AGUGGGGAACCCUUCCAUGAGGA 9 92.5
gorilla ggo-mir-1287 UGCUGGAUCAGUGGUUCGAG 10 0.8
gorilla ggo-mir-146b UGAGAACUGAAUUCCAUAGGCUGU 10 10004.3
gorilla ggo-mir-2110 UUGGGGAAGCGGCCGCUGAGUGA 10 1.4
gorilla ggo-mir-346 UGUCUGCCCGCAUGCCUGCCUC 10 1.8
gorilla ggo-mir-4484 GAAAAAGGCGGGAGAAGCCCCA 10 -2.5
gorilla ggo-mir-202 AAGAGGUAUAGGGCAUGGGAAA 10 4.3
gorilla ggo-mir-609 AGGGUGUUUCUCUCAUCUCUGG 10 4.3
gorilla ggo-mir-548e AAAAACUGCGACUACUUUUG 10 5.4
gorilla ggo-mir-1296 UUAGGGCCCUGGCUCCAUCUCC 10 5.6
gorilla ggo-mir-548c AAAAGUACUUGCGGAUUUUG 11 12.7
gorilla ggo-mir-34c AGGCAGUGUAGUUAGCUGAUUG 11 1287.5
gorilla ggo-mir-483 AAGACGGGAGGAAAGAAGGGAG 11 1967.6
gorilla ggo-mir-4488 UAGGGGGCGGGCUCCGGCG 11 2
gorilla ggo-mir-192 CUGACCUAUGAAUUGACAGCC 11 243338.1
gorilla ggo-mir-34b AGGCAGUGUCAUUAGCUGAUUG 11 28.3
gorilla ggo-mir-210 CUGUGCGUGUGACAGCGGCUGA 11 323
gorilla ggo-mir-675b UGGUGCGGAGAGGGCCCACAGUG 11 41.1
gorilla ggo-mir-139 UCUACAGUGCACGUGUCUCCAG 11 4363.3
gorilla ggo-mir-1260b AUCCCACCACUGCCACCA 11 5.6
gorilla ggo-mir-326 CCUCUGGGCCCUUCCUCCAG 11 5.7
gorilla ggo-mir-129 AAGCCCUUACCCCAAAAAGCA 11 7084.6
gorilla ggo-mir-331 GCCCCUGGGCCUAUCCUAGAAC 12 1050.8
gorilla ggo-mir-3612 AGGAGGCAUCUUGAGAAAUGG 12 12.5
gorilla ggo-mir-1252 AGAAGGAAGUUGAAUUCAUU 12 16
gorilla ggo-mir-148b UCAGUGCAUCACAGAACUUUG 12 2086.5
gorilla ggo-let-7i UGAGGUAGUAGUUUGUGCUGU 12 25708.1
gorilla ggo-mir-1228 GUGGGCGGGGGCAGGUGUGUGG 12 30.4
gorilla ggo-mir-1291 GUGGCCCUGACUGAAGACCAGCA 12 5.3
gorilla ggo-mir-1197 UAGGACACAUGGUCUACUUC 14 -0.3
gorilla ggo-mir-370 GCCUGCUGGGGUGGAACCUGGUC 14 0.6
gorilla ggo-mir-431 UGCAGGUCGUCUUGCAGGGCU 14 1
gorilla ggo-mir-380 UAUGUAAUAUGGUCCACAUC 14 106
gorilla ggo-mir-3545 UUGAACUGUUAAGAACCACUGG 14 12.6
gorilla ggo-mir-433 AUCAUGAUGGGCUCCUCGGUG 14 1331
gorilla ggo-mir-376a AUCAUAGAGGAAAAUCCACG 14 156.3
gorilla ggo-mir-655 AUAAUACAUGGUUAACCUCUU 14 158.8
gorilla ggo-mir-379 UGGUAGACUAUGGAACGUAGG 14 1946
gorilla ggo-mir-624 UAGUACCAGUACCUUGUGUUCA 14 2
gorilla ggo-mir-409 AGGUUACCCGAGCAACUUUGCA 14 233
gorilla ggo-mir-487a AAUCAUACAGGGACAUCCAGU 14 245.1
gorilla ggo-mir-495 AAACAAACAUGGUGCACUUCU 14 2528.9
gorilla ggo-mir-543 AAACAUUCGCGGUGCACUUCU 14 260.4
gorilla ggo-mir-432 UCUUGGAGUAGGUCAUUGGGUG 14 2631.8
gorilla no id*1 AGGGGGAAAGUUCUAUAG 14 3.4
gorilla ggo-mir-493 UUGUACAUGGUAGGCUUUCAU 14 38.4
gorilla ggo-mir-889 UUAAUAUCGGACAACCAUUG 14 3.9
gorilla ggo-mir-485 AGAGGCUGGCCGUGAUGAAU 14 3983.2
gorilla ggo-mir-299 UGGUUUACCGUCCCACAUACA 14 446.3
gorilla ggo-mir-494 UGAAACAUACACGGGAAACCUC 14 4.7
gorilla ggo-mir-329b AACACACCUGGUUAACCUCU 14 4.7
gorilla ggo-mir-1185 AGAGGAUACCCUUUGUAUGU 14 5
gorilla ggo-mir-496 UGAGUAUUACAUGGCCAAUC 14 5
gorilla ggo-mir-487b AAUCGUACAGGGUCAUCCACU 14 5.1
gorilla ggo-mir-127 UCGGAUCCGUCUGAGCUUGGC 14 5.2
gorilla ggo-mir-323b CCCAAUACACGGUCGACCUC 14 5.3
gorilla ggo-mir-337 GAACGGCUUCAUACAGGAG 14 5.3
gorilla ggo-mir-668 AUGUCACUCGGCUCGGCCCAC 14 5.3
gorilla ggo-mir-342 UCUCACACAGAAAUCGCACCCG 14 5.4
gorilla ggo-mir-1193 GGGAUGGUAGACCGGUGACGUGC 14 5.4
gorilla ggo-mir-376c AACAUAGAGGAAAUUCCACG 14 558
gorilla ggo-mir-3173 AAAGGAGGAAAUAGGCAGGCCAG 14 5.7
gorilla ggo-mir-654 UGGUGGGCCGCAGAACAUGUGC 14 58.5
gorilla ggo-mir-411 AUAGUAGACCGUAUAGCGUACG 14 587.6
gorilla ggo-mir-656 AAUAUUAUACAGUCAACCUC 14 59.4
gorilla ggo-mir-410 AAUAUAACACAGAUGGCCUG 14 644.2
gorilla ggo-mir-376b AUCAUAGAGGAAAAUCCAUG 14 71.1
gorilla ggo-mir-377 AUCACACAAAGGCAACUUUUG 14 83.6
gorilla ggo-mir-381 UAUACAAGGGCAAGCUCUCUG 14 86.1
gorilla ggo-mir-345 GCUGACUCCUAGUCCAGGGCUCG 14 88.9
gorilla ggo-mir-323a CACAUUACACGGUCGACCUC 14 894
gorilla ggo-mir-628 AUGCUGACAUAUUUACUAGAGG 15 141.7
gorilla ggo-mir-1179 AAGCAUUCUUUCAUUGGUUGG 15 27.1
gorilla ggo-mir-4510 UGAGGGAGUAGGAUGUAUGGU 15 4.7
gorilla ggo-mir-1266 CCUCAGGGCUGUAGAACAGGGCUG 15 5.9
gorilla ggo-mir-629 UGGGUUUAUGUUGGGAGAACU 15 78.2
gorilla ggo-mir-1343 CUCCUGGGGCCCGCACUC 16 1
gorilla ggo-mir-484 UCAGGCUCAGUCCCCUCCCGA 16 1.1
gorilla ggo-mir-328 CUGGCCCUCUCUGCCCUUCCG 16 116.1
gorilla ggo-mir-193b CGGGGUUUUGAGGGCGAGAUGA 16 1197.1
gorilla ggo-mir-940 AAGGCAGGGCCCCCGCUCCCC 16 1.9
gorilla ggo-mir-138 AGCUGGUGUUGUGAAUCAGGCCG 16 3411
gorilla ggo-mir-365a UAAUGCCCCUAAAAAUCCUUA 16 698
gorilla ggo-mir-140 ACCACAGGGUAGAACCACGGAC 16 97632.3
gorilla ggo-mir-324 CGCAUCCCCUAGGGCAUUGGUG 17 550.3
gorilla ggo-mir-497 CAGCAGCACACUGUGGUUUG 17 5.6
gorilla ggo-mir-4520b UUUGGACAGAAAACACGCAGG 17 5.6
gorilla ggo-mir-887 GUGAACGGGCGCCAUCCCGAGGCU 17 81.3
gorilla ggo-mir-22 AAGCUGCCAGUUGAAGAACUG 17 8262.6
gorilla ggo-mir-582 UUACAGUUGUUCAACCAGUUAC 17 86.1
gorilla ggo-mir-4529 UCAUUGGACUGCUGAUGGCCUG 18 0.8
gorilla ggo-mir-122 UGGAGUGUGACAAUGGUGUUUG 18 2545110.2
gorilla ggo-mir-4743 UGGCCGGAUGGGACAGGAGGCA 18 5.4
gorilla ggo-mir-1 UGGAAUGUAAAGAAGUAUGUA 18 54001.2
gorilla ggo-mir-517c AUCGUGCAUCCCUUUAGAGUG 19 3
gorilla ggo-mir-516b AUCUGGAGGUAAGAAGCACUU 19 3.9
gorilla ggo-mir-371b ACUCAAAAGAUGGCGGCACUU 19 5.3
gorilla ggo-mir-330 GCAAAGCACACGGCCUGCAGAGA 19 5.4
gorilla ggo-mir-769 UGAGACCUCUGGGUUCUGAGC 19 545.2
gorilla ggo-mir-125a UCCCUGAGACCCUUUAACCUG 19 5.5
gorilla ggo-mir-641 AAAGACAUAGGAUAGAGUCACC 19 6
gorilla ggo-mir-181d AACAUUCAUUGUUGUCGGUGGGU 19 6323.7
gorilla ggo-mir-150 UCUCCCAACCCUUGUACCAGUG 19 64.7
gorilla ggo-let-7e UGAGGUAGGAGGUUGUAUAGU 19 86198.3
gorilla ggo-mir-1289 UGGAAUCCAGGAAUCUGCAUUU 20 5.2
gorilla ggo-mir-499a UUAAGACUUGCAGUGAUGUU 20 5.5
gorilla ggo-mir-296 AGGGUUGGGUGGAGGCUCUCC 20 6.2
gorilla ggo-let-7c UGAGGUAGUAGGUUGUAUGGU 21 270515.7
gorilla ggo-mir-155 UUAAUGCUAAUCGUGAUAGGGG 21 5.3
gorilla ggo-mir-1306 ACGUUGGCUCUGGUGGUGAUG 22 1.1
gorilla ggo-mir-1286 UGCAGGACCAAGAUGAGCCCU 22 1.3
gorilla ggo-let-7b UGAGGUAGUAGGUUGUGUGGU 22 224101.1
gorilla ggo-mir-1249 ACGCCCUUCCCCCCCUUCUUCA 22 29.3
gorilla ggo-let-7a UGAGGUAGUAGGUUGUAUAGU 22 523694.4
gorilla ggo-mir-130b CAGUGCAAUGAUGAAAGGGCA 22 548.3
gorilla ggo-mir-185 UGGAGAGAAAGGCAGUUCCUGA 22 9137.4
gorilla ggo-mir-18b UAAGGUGCAUCUAGUGCAGU X -0.1
gorilla ggo-mir-4536 UAUCGUGCAUAUAUCUACCACA X 0.4
gorilla ggo-mir-508 ACUGUAGCCUUUCUGAGUAGA X 0.7
gorilla ggo-mir-374b AUAUAAUACAACCUGCUAAGUG X 1006.8
gorilla ggo-mir-532 CAUGCCUUGAGUGUAGGACCG X 1105.2
gorilla ggo-mir-542 UGUGACAGAUUGAUAACUGAAA X 121
gorilla ggo-mir-450b UUUUGCAAUAUGUUCCUGAAUA X 16
gorilla ggo-mir-502a AAUGCACCUGGGCAAGGAUUCA X 164
gorilla ggo-mir-503 UAGCAGCGGGAACAGUUCUGCAG X 180.3
gorilla ggo-mir-504 GACCCUGGUCUGCACUCUA X 2
gorilla ggo-mir-188 CAUCCCUUGCAUGGUGGAGGGUG X 20.1
gorilla ggo-mir-424 CAGCAGCAAUUCAUGUUUUGA X 2017.9
gorilla ggo-mir-509 UACUGCAGACGUGGCAAUCAUG X 20.9
gorilla ggo-mir-660 UACCCAUUGCAUAUCGGAGUUG X 247.5
gorilla ggo-mir-652 AAUGGCGCCACUAGGGUUGUG X 291.5
gorilla ggo-mir-363 AAUUGCACGGUAUCCAUCUGUAA X 362.8
gorilla ggo-mir-676 CUGUCCUAAGGUUGUUGAGUUG X 4
gorilla ggo-mir-374a CUUAUCAGAUUGUAUUGUAAU X 414.8
gorilla ggo-mir-105 CCACGGAUGUUUGAGCAUGUG X -4.4
gorilla ggo-mir-23c AUCACAUUGCCAGUGAUUACCC X 4.4
gorilla ggo-mir-421 AUCAACAGACAUUAAUUGGGCG X 5
gorilla ggo-mir-20b CAAAGUGCUCAUAGUGCAGGUAG X 5
gorilla ggo-mir-651 UUUAGGAUAAGCUUGACUUUUG X 5
gorilla ggo-mir-452 AACUGUUUGCAGAGGAAACUGA X 5.2
gorilla ggo-mir-767 UGCACCAUGGUUGUCUGAGCA X 5.3
gorilla ggo-mir-502b AUGCACCUGGGCAAGGAUUCUGA X 5.3
gorilla ggo-mir-505 GUCAACACUUGCUGGUUUCC X 5.4
gorilla ggo-mir-1298 UUCAUUCGGCUGUCCAGAUG X 5.4
gorilla ggo-mir-222 AGCUACAUCUGGCUACUGGGUC X 5.6
gorilla ggo-mir-361 UUAUCAGAAUCUCCAGGGGUAC X 615.7
gorilla ggo-mir-450a UUUUGCGAUGUGUUCCUAAUA X 69.1
gorilla ggo-mir-448 UUGCAUAUGUAGGAUGUCCCA X 70
gorilla ggo-mir-362 AACACACCUAUUCAAGGAUUCA X 70.8
gorilla ggo-mir-766 ACUCCAGCCCCACAGCCUCAGC X 72.8
gorilla ggo-mir-1264 ACAAGUCUUAUUUGAGCACCUG X 7.8
gorilla ggo-mir-1277 UACGUAGAUAUAUAUGUAUUU X 93.5

orangutan ppy-mir-4427 UCUGAAUAGAGUCUGAAGAG 1 0.2
orangutan ppy-mir-3121 UAAAUAGAGUAGGCAAAGGACA 1 1.2
orangutan ppy-mir-1976 CUCCUGCCCUCCUUGCUGUAG 1 3.8
orangutan ppy-mir-4774 UCUGGUAUGUAGUAGGUAAUAA 2B 2.1
orangutan ppy-mir-4782 UUCUGGAUAUGAAGACAAUCA 2B 3.2
orangutan ppy-mir-4791 UGGAUAUGAUGACUGAAA 3 0.8
orangutan ppy-mir-4446 CAGGGCUGGCAGUGAGAUGGG 3 2829
orangutan ppy-mir-4796 UAAAGUGGCAGAGUAUAGACACA 3 3.3
orangutan ppy-mir-378b ACUGGACUUGGAGGCAGAAAG 3 5.3
orangutan ppy-mir-4788 ACGGACCAGCUAAGGGAGGCAU 3 5.9
orangutan ppy-mir-3938 AAUUCCCUUGUAGAUAACCUGG 3 8.5
orangutan ppy-mir-4798 UUCGGUAUACUUUGUGAAUUGG 4 11.1
orangutan ppy-mir-4451 UGGUAGAGCUGAGGACAG 4 4.6
orangutan ppy-mir-3661 UGACCUGGGACUCGGAUAGCUGC 5 1.5
orangutan ppy-mir-548h AAAAGUAAUUGCGGUUUUUG 5 23.7
orangutan ppy-mir-4637 UACUAACUGCAGAUUCAAGUGA 5 3
orangutan ppy-mir-378e ACUGGACUUGGAGUCAGG 5 4.1
orangutan ppy-mir-3912 UAACGCAUAAUAUGGACAUG 5 4.5
orangutan ppy-mir-548f CAAAAACUGUAAUUACUUUUG 5 5.1
orangutan ppy-mir-3660 CACUGACAGGAGAGCAUUUUGA 5 5.3
orangutan ppy-mir-548a AAAAGUAAUUGUGGUUUUUG 6 4.9
orangutan ppy-mir-1273e GAGGCAGGAGAAUCGCUUG 6 5
orangutan ppy-mir-3934 UCAGGUGUGGAAUCUGAGGCA 6 5.3
orangutan ppy-mir-3145 AACUCCAAGCAUUCAAAACUCA 6 5.4
orangutan ppy-mir-3943 UAGCCCCCAGGCUUCACUUGGCG 7 22.2
orangutan ppy-mir-4667 UGACUGGGGAGCAGAAGGAGA 9 1.6
orangutan ppy-mir-3154 CAGAAGGGGAGUUGGGAGCAG 9 1.9
orangutan ppy-mir-4672 ACACAGCUGGACAGAGGGACGA 9 4.8
orangutan ppy-mir-2861 GGCGGCGGGCGUCGGGCG 9 6
orangutan ppy-mir-2278 GAGGGCAGUGUGUGUUGUGUGG 9 8.8
orangutan ppy-mir-4484 AAAAAGGCGGGAGAAGCCCCG 10 3.9
orangutan ppy-mir-548e AAAACGGUGACUACUUUUGCA 10 4.8
orangutan ppy-mir-202 UUCCUAUGCAUAUACUUCUU 10 49.7
orangutan ppy-mir-3155a CAGGCUCUGCAGUGGGAACGGA 10 6.1
orangutan ppy-mir-548c AAAAGUACUUGCGGAUUUUG 11 5
orangutan ppy-mir-1260b AUCCCACCACUGCCACCA 11 5.5
orangutan ppy-mir-3170 CUGGGGUUCUGAGACAGACAG 13 2.4
orangutan ppy-mir-151b UCCAGGAGCUCACAGUCUAG 14 2.6
orangutan ppy-mir-1193 GGGAUGGUAGACCGGUGACGUGC 14 5
orangutan ppy-mir-3173 AAGGAGGAAAUAGGCAGGCCAG 14 5.8
orangutan ppy-mir-3174 UAGUGAGUUAGAGAUGCAGAGC 15 1.7
orangutan ppy-mir-4515 AGGACUGGACUCCCGGCGGC 15 2.9
orangutan ppy-mir-10a UACCCUGUAGAUCCGAAUUUG 17 4.3
orangutan ppy-mir-454 UAGUGCAAUAUUGCUUAUAGGG 17 5
orangutan ppy-mir-4520a UGGACAGAAAACACGCAGGAAG 17 5.2
orangutan ppy-mir-152 UCAGUGCAUGACAGAACUUGG 17 8232.8
orangutan ppy-mir-4526 GCUGACAGCAGGGCCGGCCAC 18 2.8
orangutan ppy-mir-4529 AUUGGACUGCUGAUGGCCUG 18 3.6
orangutan ppy-mir-4743 UGGCCGGAUGGGACAGGAGGCA 18 5.4
orangutan ppy-mir-3188 AGAGGCUUUGUGCGGACUCGG 19 1.1
orangutan ppy-mir-3940 CAGCCCGGAUCCCAGCCCACUCA 19 1.5
orangutan ppy-mir-320e AAAAGCUGGGUUGAGAAGGUGA 19 4.6
orangutan ppy-mir-3617 AAAGACAUAGUUGCAAGAUGGG 20 1.6
orangutan ppy-mir-378d ACUGGACUUGGAGUCAGA X 4.3
orangutan ppy-mir-676 CCGUCCUAAGGUUGUUGAGUUG X 5.1

rhesus macaque mml-mir-1255b UACGGAUAAGCAAAGAAAGUGG 1 2.1
rhesus macaque mml-mir-320b AAAAGCUGGGUUGAGAGGGCAA 1 5.1
rhesus macaque mml-mir-3122 GUUGGGACAAGAGAACGGUCU 1 5.5
rhesus macaque mml-mir-1262 UGAUGGGUGAAUUUGUAGAAGG 1 647.1
rhesus macaque mml-mir-4446 CAGGGCUGGCAGUGAGAUGGG 2 26007.7
rhesus macaque mml-mir-1284 UCUGUACAGACCCUGGCUUU 2 4.5
rhesus macaque mml-mir-4796 AAGUGGCAGAGUGUAGACACAA 2 5.9
rhesus macaque mml-mir-3146 CAUGCUAGAACAGAAAGAAUGGG 3 5
rhesus macaque mml-mir-4650 UGGAAGGUAGAAUGAGGCCUGAU 3 5.8
rhesus macaque mml-mir-3145 UAUUUUGAGUGUUUGGAAUUGA 4 4.8
rhesus macaque mml-mir-1243 AAACUGGAUCAAUUAUAGGAG 5 17.7
rhesus macaque mml-mir-378d ACUGGACUUGGAGUCAGAAGCA 5 4.8
rhesus macaque mml-mir-3140 AAGAGCUUUUGGGAAUUCAGG 5 5.3
rhesus macaque mml-mir-1255a AGGAUGAGCAAAGGAAGUAGU 5 5.7
rhesus macaque mml-mir-4803 UAACAUAAUAGUGUGGACUGA 6 5.6
rhesus macaque mml-mir-1271 CUUGGCACCUAGCAAGCACUCA 6 980.3
rhesus macaque mml-mir-1179 AAGCAUUCUUUCAUUGGUUGG 7 16.9
rhesus macaque mml-mir-1185 AGAGGAUACCCUUUGUAUGU 7 5.2
rhesus macaque mml-mir-3173 GAAGGAGGAAACAGGCAGGCCAG 7 5.8
rhesus macaque mml-mir-4716 AAGGGGGAAGGACACAUGGAGA 7 6.1
rhesus macaque mml-mir-3151 ACGGGUGGCGCAAUGGGAUCAG 8 223.8
rhesus macaque mml-mir-1296 UUAGGGCCCUGGCUCCAUCUCCU 9 5.5
rhesus macaque mml-mir-1249 ACGCCCUUCCCCCCCUUCUUCA 10 118
rhesus macaque mml-mir-3200 CACCUUGCGCUACUCAGGUCUG 10 202.6
rhesus macaque mml-mir-1258 AGUUAGGAUUAGGUCGUGGAA 12 5.9
rhesus macaque mml-mir-217b UACUGCAUCAGGAACUGAUUGGA 13 4.3
rhesus macaque mml-mir-1260b AUCCCACCACUGCCACCA 14 5.6
rhesus macaque mml-mir-1304 UUCGAGGCUACAAUGAGAUGUG 14 5.8
rhesus macaque no id*2 CCAGGCUGGAGUGCAGUGG 15 4.1
rhesus macaque mml-mir-873 GCAGGAACUUGUGAGUCUCC 15 4275.6
rhesus macaque mml-mir-4667 ACUGGGGAGCAGAAGGAGAAC 15 5.5
rhesus macaque mml-mir-3927 CAGGUAGAUAUUUGAUAGGCA 15 6.1
rhesus macaque mml-mir-1250 ACGGUGCUGAAUGUGGCCUU 16 5.6
rhesus macaque mml-mir-320c AAAAGCUGGGUUGACAGGGUAA 18 3.8
rhesus macaque mml-mir-4743 UGGCCGGAUGGGACAGGAGGCA 18 5.3
rhesus macaque mml-mir-518d CUCUAGAGGAAAGCGCUUACUG 19 103
rhesus macaque mml-mir-517c AUCGUGCAGCCUUUUAGAGUG 19 106.7
rhesus macaque mml-mir-519e UUCUCCAAUGGGAAGCACCUUC 19 132.7
rhesus macaque mml-mir-1283 CUACAAAGGAAAGCACUUUC 19 4.9
rhesus macaque mml-mir-1323 UCAAAACUGAGGGGCAUUUUC 19 6232.9
rhesus macaque mml-mir-1298 UUCAUUCGGCUGUCCAGAUGUA X 198.4
rhesus macaque mml-mir-891b UGCAACGAACUUGAGCCAUUGA X 24.7
rhesus macaque mml-mir-2114 CGAGCCUCAAGCAAGGGACUUC X 25.3
rhesus macaque mml-mir-4536 UGUGGUAGAUAUAUGCACGA X 4.2
rhesus macaque mml-mir-1277 UACGUAGAUAUAUAUGUAUUU X 543.7
rhesus macaque mml-mir-676 CCGUCCUAAGGUUGUUGAGU X 766.4
rhesus macaque mml-mir-514b AUUGACACCUCUGUGAGUAGA X 997.4

*1,2 miRBase did not provide names due to ambiguous N bases in the hairpin sequence or missing relationships to existing miRNAs in the database.

Orthology of miRNAs

We identified orthologous regions starting from human hg19-based miRBase (version 17) hairpin locations [16,17]. The genome coordinates were transferred to hg18 coordinates using liftOver [34] with the 95% identity cutoff. Human mature sequences from miRBase were aligned to the human genome (hg18) and their corresponding hairpin sequences were assigned by overlapping genome coordinates using intersectBed from Bedtools [35]. All other primate miRNA mature sequences (known and predicted) were aligned against the corresponding genome and their genome locations were transferred to hg18 coordinates. The mature miRNA sequences found in the other primates that overlapped with human coordinates were defined as orthologous. The corresponding primate hairpin sequence was obtained by transferring the human genome hairpin coordinates to the corresponding primate genome. We excluded regions where liftOver was unable to identify an orthologous region.

Tissue specificity

MiRNAs were defined to be tissue specific when less than 5% of reads map to other tissues. This means that at least 80% of the perfectly aligned reads in chimpanzee and rhesus macaque (where we have reads from 4 tissues), and 95% of the perfectly aligned reads in gorilla and orangutan (where we have reads from 2 tissues) that were used for the prediction of the miRNA came from one tissue.

Sequence comparison

Sequence identity of miRNAs (mature/hairpin) in orthologous regions was computed using the multiple sequence alignment tool MUSCLE [36] and the identity function of the R package bio3d [37].

Secondary structure analysis

We calculated the minimum free energy (MFE) of known and predicted hairpin sequences by using RNAfold algorithm with default parameters [38]. The MFE for each group of annotated/predicted miRNAs was computed by averaging the MFEs.

Authors' contributions

MD: Conceived and designed the experiments, analyzed the data, contributed reagents/materials/analysis tools, wrote the paper. BN: Performed the experiments. EL: Performed the experiments. HAB: Conceived and designed the experiments, analyzed the data, contributed reagents/materials/analysis tools, wrote the paper. JK: Conceived and designed the experiments, contributed reagents/materials/analysis tools, wrote the paper. All authors read and approved the final manuscript.

Contributor Information

Michael Dannemann, Email: michael_dannemann@eva.mpg.de.

Birgit Nickel, Email: nickel@eva.mpg.de.

Esther Lizano, Email: esther.lizano@crg.es.

Hernán A Burbano, Email: hernan_burbano@eva.mpg.de.

Janet Kelso, Email: kelso@eva.mpg.de.

Acknowledgements

We would like to thank Thomas Giger for the dissection of the frozen tissues; Ines Drinnenberg, Matthias Meyer and the Sequencing Group of the MPI-EVA for coordinating sequencing runs; Martin Kircher for technical assistance with sequencing runs processing; Marike Schreiber for assistance with the figure preparation. The project was founded by a grant of the Max Planck Society.

References

  1. Marques-Bonet T, Ryder OA, Eichler EE. Sequencing primate genomes: what have we learned? Annu Rev Genomics Hum Genet. 2009;10:355–386. doi: 10.1146/annurev.genom.9.081307.164420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W. et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921. doi: 10.1038/35057062. [DOI] [PubMed] [Google Scholar]
  3. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA. et al. The sequence of the human genome. Science. 2001;291(5507):1304–1351. doi: 10.1126/science.1058040. [DOI] [PubMed] [Google Scholar]
  4. Mikkelsen TS, Hillier LW, Eichler EE, Zody MC, Jaffe DB, Yang SP, Enard W, Hellmann I, Lindblad-Toh K, Altheide TK. et al. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature. 2005;437(7055):69–87. doi: 10.1038/nature04072. [DOI] [PubMed] [Google Scholar]
  5. Locke DP, Hillier LW, Warren WC, Worley KC, Nazareth LV, Muzny DM, Yang SP, Wang Z, Chinwalla AT, Minx P. et al. Comparative and demographic analysis of orang-utan genomes. Nature. 2011;469(7331):529–533. doi: 10.1038/nature09687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF. et al. Complementary DNA sequencing: expressed sequence tags and human genome project. Science. 1991;252(5013):1651–1656. doi: 10.1126/science.2047873. [DOI] [PubMed] [Google Scholar]
  7. Adams MD, Kerlavage AR, Fleischmann RD, Fuldner RA, Bult CJ, Lee NH, Kirkness EF, Weinstock KG, Gocayne JD, White O. et al. Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. Nature. 1995;377(6547 Suppl):3–174. [PubMed] [Google Scholar]
  8. Garber M, Grabherr MG, Guttman M, Trapnell C. Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods. 2011;8(6):469–477. doi: 10.1038/nmeth.1613. [DOI] [PubMed] [Google Scholar]
  9. Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Federhen S, Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2011. pp. D38–51. [DOI] [PMC free article] [PubMed]
  10. Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447(7146):799–816. doi: 10.1038/nature05874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Clark MB, Amaral PP, Schlesinger FJ, Dinger ME, Taft RJ, Rinn JL, Ponting CP, Stadler PF, Morris KV, Morillon A. et al. The reality of pervasive transcription. PLoS Biol. 2011;9(7):e1000625. doi: 10.1371/journal.pbio.1000625. discussion e1001102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. Nat Rev Genet. 2009;10(2):94–108. doi: 10.1038/nrg2504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–854. doi: 10.1016/0092-8674(93)90529-Y. [DOI] [PubMed] [Google Scholar]
  14. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005;433(7027):769–773. doi: 10.1038/nature03315. [DOI] [PubMed] [Google Scholar]
  15. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75(5):855–862. doi: 10.1016/0092-8674(93)90530-4. [DOI] [PubMed] [Google Scholar]
  16. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008. pp. D154–158. [DOI] [PMC free article] [PubMed]
  17. Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011. pp. D152–157. [DOI] [PMC free article] [PubMed]
  18. Berezikov E, Cuppen E, Plasterk RH. Approaches to microRNA discovery. Nat Genet. 2006;38(Suppl):S2–7. doi: 10.1038/ng1794. [DOI] [PubMed] [Google Scholar]
  19. Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E. Phylogenetic shadowing and computational identification of human microRNA genes. Cell. 2005;120(1):21–24. doi: 10.1016/j.cell.2004.12.031. [DOI] [PubMed] [Google Scholar]
  20. Yue J, Sheng Y, Orwig KE. Identification of novel homologous microRNA genes in the rhesus macaque genome. BMC Genomics. 2008;9:8. doi: 10.1186/1471-2164-9-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Baev V, Daskalova E, Minkov I. Computational identification of novel microRNA homologs in the chimpanzee genome. Comput Biol Chem. 2009;33(1):62–70. doi: 10.1016/j.compbiolchem.2008.07.024. [DOI] [PubMed] [Google Scholar]
  22. Brameier M. Genome-wide comparative analysis of microRNAs in three non-human primates. BMC Res Notes. 2011;3:64. doi: 10.1186/1756-0500-3-64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Washietl S. Sequence and structure analysis of noncoding RNAs. Methods Mol Biol. 2010;609(2010):285–306. doi: 10.1007/978-1-60327-241-4_17. [DOI] [PubMed] [Google Scholar]
  24. Berezikov E, Thuemmler F, van Laake LW, Kondova I, Bontrop R, Cuppen E, Plasterk RH. Diversity of microRNAs in human and chimpanzee brain. Nat Genet. 2006;38(12):1375–1377. doi: 10.1038/ng1914. [DOI] [PubMed] [Google Scholar]
  25. Somel M, Guo S, Fu N, Yan Z, Hu HY, Xu Y, Yuan Y, Ning Z, Hu Y, Menzel C. et al. MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain. Genome Res. 2010;20(9):1207–1218. doi: 10.1101/gr.106849.110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, Rajewsky N. Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol. 2008;26(4):407–415. doi: 10.1038/nbt1394. [DOI] [PubMed] [Google Scholar]
  27. Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2011. [DOI] [PMC free article] [PubMed]
  28. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007;129(7):1401–1414. doi: 10.1016/j.cell.2007.04.040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Dannemann M, Prufer K, Lizano E, Nickel B, Burbano HA, Kelso J. Transcription factors are targeted by differentially expressed miRNAs in primates. [DOI] [PMC free article] [PubMed]
  30. Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 2009;11(3):228–234. doi: 10.1038/ncb0309-228. [DOI] [PubMed] [Google Scholar]
  31. Gibbs RA, Rogers J, Katze MG, Bumgarner R, Weinstock GM, Mardis ER, Remington KA, Strausberg RL, Venter JC, Wilson RK. et al. Evolutionary and biomedical insights from the rhesus macaque genome. Science. 2007;316(5822):222–234. doi: 10.1126/science.1139247. [DOI] [PubMed] [Google Scholar]
  32. Kircher M, Stenzel U, Kelso J. Improved base calling for the Illumina Genome Analyzer using machine learning strategies. Genome Biol. 2009;10(8):R83. doi: 10.1186/gb-2009-10-8-r83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Prufer K, Stenzel U, Dannemann M, Green RE, Lachmann M, Kelso J. PatMaN: rapid alignment of short sequences to large databases. Bioinformatics. 2008;24(13):1530–1531. doi: 10.1093/bioinformatics/btn223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Hinrichs AS, Karolchik D, Baertsch R, Barber GP, Bejerano G, Clawson H, Diekhans M, Furey TS, Harte RA, Hsu F, The UCSC Genome Browser Database: update 2006. Nucleic Acids Res. 2006. pp. D590–598. [DOI] [PMC free article] [PubMed]
  35. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–842. doi: 10.1093/bioinformatics/btq033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–1797. doi: 10.1093/nar/gkh340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Grant BJ, Rodrigues AP, ElSawy KM, McCammon JA, Caves LS. Bio3d: an R package for the comparative analysis of protein structures. Bioinformatics. 2006;22(21):2695–2696. doi: 10.1093/bioinformatics/btl461. [DOI] [PubMed] [Google Scholar]
  38. Hofacker IL. Vienna RNA secondary structure server. Nucleic Acids Res. 2003;31(13):3429–3431. doi: 10.1093/nar/gkg599. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from BMC Genomics are provided here courtesy of BMC

RESOURCES