Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1972 Jan;51(1):174–180. doi: 10.1172/JCI106789

Precursor-Product Relationship between Pools of Very Low Density Lipoprotein Triglyceride

Philip J Barter 1, Paul J Nestel 1
PMCID: PMC332943  PMID: 5007049

Abstract

The process of removal of triglyceride from the plasma may involve a sequential conversion of larger to smaller glyceride-rich lipoproteins. This has been studied within the species of lipoproteins comprising the very low density lipoproteins (VLDL) which transport the bulk of endogenously formed triglyceride. Palmitic acid-14C which was used to label the plasma glycerides was administered either as a prolonged constant infusion or as a pulse label. The specific activity-time curves of triglyceride fatty acids (TGFA) were analyzed both in total VLDL and in two subfractions of VLDL. The nature of the curves for total VLDL that were observed during the constant infusions were consistent with slow isotopic equilibration of precursors of VLDL-TGFA or with the presence of a precursor-product relationship between different components of VLDL-TGFA. The curves did not indicate any detectable differences in (fractional) turnover rates of independently metabolized pools of VLDL-TGFA. Differences in the specific activity-time curves of TGFA in two subfractions of VLDL (Sf > 100 and Sf 20-100) were consistent with a precursor-product relationship between TGFA in the two subfractions; again there was no indication of significant differences in (fractional) turnover rates. The specific activity-time curves of TGFA in the two subfractions of VLDL that were obtained with single injections of radio-palmitate showed a consistent difference in the rates at which TGFA became labeled in the two subfractions, being slower in the Sf 20-100 fraction. The findings from all experiments when considered together, were compatible with a precursor-product relationship that suggested that larger VLDL were converted to progressively smaller species as triglyceride was being removed.

Full text

PDF
174

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BORGSTROM B. Investigation on lipid separation methods. Separation of cholesterol esters, glycerides and free fatty acids. Acta Physiol Scand. 1952 Jun 6;25(2-3):111–119. doi: 10.1111/j.1748-1716.1952.tb00863.x. [DOI] [PubMed] [Google Scholar]
  2. Barter P. J., Nestel P. J. The distribution of triglyceride in subclasses of very low density plasma lipoproteins. J Lab Clin Med. 1970 Dec;76(6):925–932. [PubMed] [Google Scholar]
  3. DOLE V. P. A relation between non-esterified fatty acids in plasma and the metabolism of glucose. J Clin Invest. 1956 Feb;35(2):150–154. doi: 10.1172/JCI103259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eaton R. P., Berman M., Steinberg D. Kinetic studies of plasma free fatty acid and triglyceride metabolism in man. J Clin Invest. 1969 Aug;48(8):1560–1579. doi: 10.1172/JCI106122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FARQUHAR J. W., GROSS R. C., WAGNER R. M., REAVEN G. M. VALIDATION OF AN INCOMPLETELY COUPLED TWO-COMPARTMENT NONRECYCLING CATENARY MODEL FOR TURNOVER OF LIVER AND PLASMA TRIGLYCERIDE IN MAN. J Lipid Res. 1965 Jan;6:119–134. [PubMed] [Google Scholar]
  6. FREDRICKSON D. S., GORDON R. S., Jr The metabolism of albumin-bound C14-labeled unesterified fatty acids in normal human subjects. J Clin Invest. 1958 Nov;37(11):1504–1515. doi: 10.1172/JCI103742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Felts J. M. The metabolism of chylomicron triglyceride fatty acids by perfused rat livers and by intact rats. Ann N Y Acad Sci. 1965 Oct 8;131(1):24–33. doi: 10.1111/j.1749-6632.1965.tb34776.x. [DOI] [PubMed] [Google Scholar]
  8. Fredrickson D. S., Levy R. I., Lees R. S. Fat transport in lipoproteins--an integrated approach to mechanisms and disorders. N Engl J Med. 1967 Jan 26;276(4):215–contd. doi: 10.1056/NEJM196701262760406. [DOI] [PubMed] [Google Scholar]
  9. GUSTAFSON A., ALAUPOVIC P., FURMAN R. H. STUDIES OF THE COMPOSITION AND STRUCTURE OF SERUM LIPOPROTEINS: ISOLATION, PURIFICATION, AND CHARACTERIZATION OF VERY LOW DENSITY LIPOPROTEINS OF HUMAN SERUM. Biochemistry. 1965 Mar;4:596–605. doi: 10.1021/bi00879a033. [DOI] [PubMed] [Google Scholar]
  10. HAVEL R. J. Conversion of plasma free fatty acids into triglycerides of plasma lipoprotein fractions in man. Metabolism. 1961 Dec;10:1031–1034. [PubMed] [Google Scholar]
  11. HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lloyd M. R., Goldrick R. B. A simplified method for estimating plasma triglycerides: their stability during cold storage. Med J Aust. 1968 Sep 21;2(12):493–496. doi: 10.5694/j.1326-5377.1968.tb82969.x. [DOI] [PubMed] [Google Scholar]
  13. Lossow W. J., Lindgren F. T., Murchio J. C., Stevens G. R., Jensen L. C. Particle size and protein content of six fractions of the Sf 20 plasma lipoproteins isolated by density gradient centrifugation. J Lipid Res. 1969 Jan;10(1):68–76. [PubMed] [Google Scholar]
  14. NESTEL P. J. RELATIONSHIP BETWEEN PLASMA TRIGLYCERIDES AND REMOVAL OF CHYLOMICRONS. J Clin Invest. 1964 May;43:943–949. doi: 10.1172/JCI104980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Quarfordt S. H., Frank A., Shames D. M., Berman M., Steinberg D. Very low density lipoprotein triglyceride transport in type IV hyperlipoproteinemia and the effects of carbohydrate-rich diets. J Clin Invest. 1970 Dec;49(12):2281–2297. doi: 10.1172/JCI106448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Quarfordt S. H., Goodman D. S. Heterogeneity in the rate of plasma clearance of chylomicrons of different size. Biochim Biophys Acta. 1966 Apr 4;116(2):382–385. doi: 10.1016/0005-2760(66)90019-1. [DOI] [PubMed] [Google Scholar]
  17. SHORE B., SHORE V. Some physical and chemical properties of the lipoproteins produced by lipolysis of human serum Sf 20-400 lipoproteins by post-heparin plasma. J Atheroscler Res. 1962 Jan-Apr;2:104–114. doi: 10.1016/s0368-1319(62)80058-1. [DOI] [PubMed] [Google Scholar]
  18. Schonfeld G. Changes in the composition of very low density lipoprotein during carbohydrate induction in man. J Lab Clin Med. 1970 Feb;75(2):206–211. [PubMed] [Google Scholar]
  19. ZILVERSMIT D. B. The design and analysis of isotope experiments. Am J Med. 1960 Nov;29:832–848. doi: 10.1016/0002-9343(60)90117-0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES