Abstract
The oxygen equilibrium characteristics of four structural variants of hemoglobin A were correlated with their amino acid substitutions.
Hemoglobin Dhofar, in which the proline at E2(58)β is replaced by arginine, had normal oxygen equilibrium characteristics.
Hemoglobin L Ferrara. in which the aspartic acid at CD5(47)α is replaced by glycine, and hemoglobin Broussais, in which the lysine at FG2(90)α is replaced by asparagine, both showed a slightly elevated oxygen affinity; nevertheless both demonstrated a normal heme-heme interaction and a normal Bohr effect.
Hemoglobin Hirose, in which the tryptophan at C3 (37)β is replaced by serine, showed abnormalities of all oxygen equilibrium characteristics; i.e., increased oxygen affinity, diminished heme-heme interaction, and reduced Bohr effect.
These results suggest that aspartic acid at CD5(47)α and lysine at FG2(90)α are involved in the function of the hemoglobin molecule, despite the fact that these positions are not located directly in the heme or the α-β-contact regions.
Tryptophan at C3(37)β is located at contact between α1- and β2-subunits. It is suggested that the substitution by serine might disturb the quarternary structure of the mutant hemoglobin molecule during transition from oxy-form to deoxy-form resulting in an alteration of the heme function.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARTELS H., BEER R., FLEISCHER E., HOFFHEINZ H. J., KRALL J., RODEWALD G., WENNER J., WITT I. Bestimmung von Kurzschlussdurchblutung und Diffusionskapazität der Lunge bei Gesunden und Lungenkranken. Pflugers Arch. 1955;261(2):99–132. doi: 10.1007/BF00369783. [DOI] [PubMed] [Google Scholar]
- Bellingham A. J., Huehns E. R. Compensation in haemolytic anaemias caused by abnormal haemoglobins. Nature. 1968 Jun 8;218(5145):924–926. doi: 10.1038/218924a0. [DOI] [PubMed] [Google Scholar]
- Benesch R., Benesch R. E. The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin. Biochem Biophys Res Commun. 1967 Jan 23;26(2):162–167. doi: 10.1016/0006-291x(67)90228-8. [DOI] [PubMed] [Google Scholar]
- Bolton W., Cox J. M., Perutz M. F. Structure and function of haemoglobin. IV. A three-dimensional Fourier synthesis of horse deoxyhaemoglobin at 5.5 A resolution. J Mol Biol. 1968 Apr 14;33(1):283–297. doi: 10.1016/0022-2836(68)90294-5. [DOI] [PubMed] [Google Scholar]
- Bonaventura J., Riggs A. Hemoglobin Kansas, a human hemoglobin with a neutral amino acid substitution and an abnormal oxygen equilibrium. J Biol Chem. 1968 Mar 10;243(5):980–991. [PubMed] [Google Scholar]
- Briehl R. W., Hobbs J. F. Ultraviolet difference spectra in human hemoglobin. I. Difference spectra in hemoglobin A and their relation to the function of hemoglobin. J Biol Chem. 1970 Feb 10;245(3):544–554. [PubMed] [Google Scholar]
- Chanutin A., Curnish R. R. Effect of organic and inorganic phosphates on the oxygen equilibrium of human erythrocytes. Arch Biochem Biophys. 1967 Jul;121(1):96–102. doi: 10.1016/0003-9861(67)90013-6. [DOI] [PubMed] [Google Scholar]
- Charache S., Mondzac A. M., Gessner U. Hemoglobin Hasharon (alpha-2-47 his(CD5)beta-2): a hemoglobin found in low concentration. J Clin Invest. 1969 May;48(5):834–847. doi: 10.1172/JCI106041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Charache S., Weatherall D. J., Clegg J. B. Polycythemia associated with a hemoglobinopathy. J Clin Invest. 1966 Jun;45(6):813–822. doi: 10.1172/JCI105397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUISMAN T. H., STILL J., NECHTMAN C. M. The oxygen equilibria of some "slow-moving" human hemoglobin types. Biochim Biophys Acta. 1963 Jul 2;74:69–74. doi: 10.1016/0006-3002(63)91330-1. [DOI] [PubMed] [Google Scholar]
- Halbrecht I., Isaacs W. A., Lehmann H., Ben-Porat F. Hemoglobin hasharon (alpha-47 aspartic acid--histidine). Isr J Med Sci. 1967 Nov-Dec;3(6):827–831. [PubMed] [Google Scholar]
- Huisman T. H., Dozy A. M. Studies on the heterogeneity of hemoglobin. IX. The use of Tris(hydroxymethyl)aminomethanehcl buffers in the anion-exchange chromatography of hemoglobins. J Chromatogr. 1965 Jul;19(1):160–169. doi: 10.1016/s0021-9673(01)99434-8. [DOI] [PubMed] [Google Scholar]
- Imai K., Morimoto H., Kotani M., Shibata S., Miyaji T. Studies on the function of abnormal hemoglobins. II. Oxygen equilibrium of abnormal hemoglobins: Shimonoseki, Ube II, Hikari, Gifu, and Agenogi. Biochim Biophys Acta. 1970 Feb 17;200(2):197–202. doi: 10.1016/0005-2795(70)90164-9. [DOI] [PubMed] [Google Scholar]
- Imai K., Morimoto H., Kotani M., Watari H., Hirata W. Studies on the function of abnormal hemoglobins. I. An improved method for automatic measurement of the oxygen equilibrium curve of hemoglobin. Biochim Biophys Acta. 1970 Feb 17;200(2):189–196. doi: 10.1016/0005-2795(70)90163-7. [DOI] [PubMed] [Google Scholar]
- Imamura T., Fujita S., Ohta Y., Hanada M., Yanase T. Hemoglobin Yoshizuka (G10(108)beta asparagine--aspartic acid): a new variant with a reduced oxygen affinity from a Japanese family. J Clin Invest. 1969 Dec;48(12):2341–2348. doi: 10.1172/JCI106200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imamura T. Hemoglobin Kagoshima: an example of hemoglobin Norfolk in a Japanese family. Am J Hum Genet. 1966 Nov;18(6):584–593. [PMC free article] [PubMed] [Google Scholar]
- KUNKEL H. G., WALLENIUS G. New hemoglobin in normal adult blood. Science. 1955 Aug 12;122(3163):288–288. doi: 10.1126/science.122.3163.288. [DOI] [PubMed] [Google Scholar]
- Kilmartin J. V., Rossi-Bernardi L. Inhibition of CO2 combination and reduction of the Bohr effect in haemoglobin chemically modified at its alpha-amino groups. Nature. 1969 Jun 28;222(5200):1243–1246. doi: 10.1038/2221243a0. [DOI] [PubMed] [Google Scholar]
- Marengo-Rowe A. J., Lorkin P. A., Gallo E., Lehmann H. Haemoglobin Dhofar--a new variant from Southern Arabia. Biochim Biophys Acta. 1968 Sep 10;168(1):58–63. doi: 10.1016/0005-2795(68)90233-x. [DOI] [PubMed] [Google Scholar]
- Muirhead H., Cox J. M., Mazzarella L., Perutz M. F. Structure and function of haemoglobin. 3. A three-dimensional fourier synthesis of human deoxyhaemoglobin at 5.5 Angstrom resolution. J Mol Biol. 1967 Aug 28;28(1):117–156. doi: 10.1016/s0022-2836(67)80082-2. [DOI] [PubMed] [Google Scholar]
- Nagel R. L., Ranney H. M., Bradley T. B., Jacobs A., Udem L. Hemoglobin L Ferrara in a Jewish family associated with a hemolytic state in the propositus. Blood. 1969 Aug;34(2):157–165. [PubMed] [Google Scholar]
- Novy M. J., Edwards M. J., Metcalfe J. Hemoglobin Yakina. II. High blood oxygen affinity associated with compensatory erythrocytosis and normal hemodynamics. J Clin Invest. 1967 Nov;46(11):1848–1854. doi: 10.1172/JCI105675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PAULING L., ITANO H. A. Sickle cell anemia a molecular disease. Science. 1949 Nov 25;110(2865):543–548. doi: 10.1126/science.110.2865.543. [DOI] [PubMed] [Google Scholar]
- Perutz M. F., Lehmann H. Molecular pathology of human haemoglobin. Nature. 1968 Aug 31;219(5157):902–909. doi: 10.1038/219902a0. [DOI] [PubMed] [Google Scholar]
- Perutz M. F., Muirhead H., Cox J. M., Goaman L. C. Three-dimensional Fourier synthesis of horse oxyhaemoglobin at 2.8 A resolution: the atomic model. Nature. 1968 Jul 13;219(5150):131–139. doi: 10.1038/219131a0. [DOI] [PubMed] [Google Scholar]
- Perutz M. F., Muirhead H., Mazzarella L., Crowther R. A., Greer J., Kilmartin J. V. Identification of residues responsible for the alkaline Bohr effect in haemoglobin. Nature. 1969 Jun 28;222(5200):1240–1243. doi: 10.1038/2221240a0. [DOI] [PubMed] [Google Scholar]
- Perutz M. F. Stereochemistry of cooperative effects in haemoglobin. Nature. 1970 Nov 21;228(5273):726–739. doi: 10.1038/228726a0. [DOI] [PubMed] [Google Scholar]
- Reed C. S., Hampson R., Gordon S., Jones R. T., Novy M. J., Brimhall B., Edwards M. J., Koler R. D. Erythrocytosis secondary to increased oxygen affinity of a mutant hemoglobin, hemoglobin Kempsey. Blood. 1968 May;31(5):623–632. [PubMed] [Google Scholar]
- Smith L. L., Plese C. F., Barton B. P., Charache S., Wilson J. B., Huisman T. H. Subunit dissociation of the abnormal hemoglobins G Georgia ( 2 95Leu (G2) 2 ) and Rampa ( 2 95Ser (G2) 2 ). J Biol Chem. 1972 Mar 10;247(5):1433–1439. [PubMed] [Google Scholar]
- Tyuma I., Shimizu K. Effect of organic phosphates on the difference in oxygen affinity between fetal and adult human hemoglobin. Fed Proc. 1970 May-Jun;29(3):1112–1114. [PubMed] [Google Scholar]
- Yamaoka K. Hemoglobin Hirose: 2 237(C3) tryptophan yielding serine. Blood. 1971 Dec;38(6):730–738. [PubMed] [Google Scholar]
- de Traverse P. M., Lehmann H., Coquelet M. L., Beale D., Isaacs W. A. Etude d'une hémoglobine J-alpha non encore décrite, dans une famille française. C R Seances Soc Biol Fil. 1966;160(12):2270–2272. [PubMed] [Google Scholar]
