Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1973 Sep;52(9):2283–2292. doi: 10.1172/JCI107416

Comparison of Cardiac Output Responses to 2,4-Dinitrophenol-Induced Hypermetabolism and Muscular Work

Chang-Seng Liang 1,2,3, William B Hood Jr 1,2,3
PMCID: PMC333032  PMID: 4727459

Abstract

Both electrically induced exercise and infusion of 2,4-dinitrophenol (DNP) increased oxygen consumption and tissue metabolism in chloralose-anesthetized dogs. Cardiac output increased with oxygen consumption at the same rate in both experimental conditions. The increase in cardiac output induced by exercise was, as expected, accompanied by increases in both lactate-to-pyruvate ratio and “excess lactate” in arterial blood. However, these parameters did not increase after DNP infusion until the rate of oxygen consumption had increased four- to fivefold, perhaps due to facilitation of mitochondrial electron transport by DNP. Anaerobic tissue metabolism therefore probably did not contribute significantly to increased cardiac output during the mild-to-moderate tissue hypermetabolism induced by DNP. The increased cardiac output may have been the result of metabolic changes common to both exercise and DNP infusion; muscular activity alone may not have been the primary determinant of the cardiac output response during exercise.

Full text

PDF
2283

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASMUSSEN E., NIELSEN M. EXPERIMENTS ON NERVOUS FACTORS CONTROLLING RESPIRATION AND CIRCULATION DURING EXERCISE EMPLOYING BLOCKING OF THE BLOOD FLOW. Acta Physiol Scand. 1964 Jan-Feb;60:103–111. doi: 10.1111/j.1748-1716.1964.tb02873.x. [DOI] [PubMed] [Google Scholar]
  2. ASTRAND P. O., CUDDY T. E., SALTIN B., STENBERG J. CARDIAC OUTPUT DURING SUBMAXIMAL AND MAXIMAL WORK. J Appl Physiol. 1964 Mar;19:268–274. doi: 10.1152/jappl.1964.19.2.268. [DOI] [PubMed] [Google Scholar]
  3. Alam M., Smirk F. H. Observations in man upon a blood pressure raising reflex arising from the voluntary muscles. J Physiol. 1937 Jun 3;89(4):372–383. doi: 10.1113/jphysiol.1937.sp003485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BARGER A. C., RICHARDS V., METCALFE J., GUNTHER B. Regulation of the circulation during exercise; cardiac output (direct Fick) and metabolic adjustments in the normal dog. Am J Physiol. 1956 Mar;184(3):613–623. doi: 10.1152/ajplegacy.1956.184.3.613. [DOI] [PubMed] [Google Scholar]
  5. Banet M., Guyton A. C. Effect of body metabolism on cardiac output: role of the central nervous system. Am J Physiol. 1971 Mar;220(3):662–666. doi: 10.1152/ajplegacy.1971.220.3.662. [DOI] [PubMed] [Google Scholar]
  6. CAIN D. F., DAVIES R. E. Breakdown of adenosine triphosphate during a single contraction of working muscle. Biochem Biophys Res Commun. 1962 Aug 7;8:361–366. doi: 10.1016/0006-291x(62)90008-6. [DOI] [PubMed] [Google Scholar]
  7. CHANCE B. The response of mitochondria to muscular contraction. Ann N Y Acad Sci. 1959 Aug 28;81:477–489. doi: 10.1111/j.1749-6632.1959.tb49329.x. [DOI] [PubMed] [Google Scholar]
  8. CHANCE B., WILLIAMS G. R. Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem. 1955 Nov;217(1):383–393. [PubMed] [Google Scholar]
  9. Coote J. H., Hilton S. M., Perez-Gonzalez J. F. The reflex nature of the pressor response to muscular exercise. J Physiol. 1971 Jul;215(3):789–804. doi: 10.1113/jphysiol.1971.sp009498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Damato A. N., Galante J. G., Smith W. M. Hemodynamic response to treadmill exercise in normal subjects. J Appl Physiol. 1966 May;21(3):959–966. doi: 10.1152/jappl.1966.21.3.959. [DOI] [PubMed] [Google Scholar]
  11. Epstein S. E., Beiser G. D., Stampfer M., Robinson B. F., Braunwald E. Characterization of the circulatory response to maximal upright exercise in normal subjects and patients with heart disease. Circulation. 1967 Jun;35(6):1049–1062. doi: 10.1161/01.cir.35.6.1049. [DOI] [PubMed] [Google Scholar]
  12. FAWAZ G., HAWA E. S., TUTUNJI B. The effect of dinitrophenol, hypoxaemia and ischaemia on the phosphorus compounds of the dog heart. Br J Pharmacol Chemother. 1957 Sep;12(3):270–272. doi: 10.1111/j.1476-5381.1957.tb00133.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. FAWAZ G., TUTUNJI B. The mechanism of dinitrophenol heart failure. Br J Pharmacol Chemother. 1957 Sep;12(3):273–278. doi: 10.1111/j.1476-5381.1957.tb00134.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. FRIEDLAND I. M., DIETRICH L. S. A rapid enzymic determination of L-lactic acid. Anal Biochem. 1961 Aug;2:390–392. doi: 10.1016/0003-2697(61)90014-8. [DOI] [PubMed] [Google Scholar]
  15. HUCKABEE W. E. Control of concentration gradients of pyruvate and lactate across cell membranes in blood. J Appl Physiol. 1956 Sep;9(2):163–170. doi: 10.1152/jappl.1956.9.2.163. [DOI] [PubMed] [Google Scholar]
  16. HUCKABEE W. E. Relationships of pyruvate and lactate during anaerobic metabolism. I. Effects of infusion of pyruvate or glucose and of hyperventilation. J Clin Invest. 1958 Feb;37(2):244–254. doi: 10.1172/JCI103603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. HUCKABEE W. E. Relationships of pyruvate and lactate during anaerobic metabolism. II. Exercise and formation of O-debt. J Clin Invest. 1958 Feb;37(2):255–263. doi: 10.1172/JCI103604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. JARISCH A., LANDGREN S., NEIL E., ZOTTERMAN Y. Impulse activity in the carotid sinus nerve following intra-carotid injection of potassium chloride, veratrine, sodium citrate, adenosine-triphosphate and alpha-dinitrophenol. Acta Physiol Scand. 1952 Jun 6;25(2-3):195–211. doi: 10.1111/j.1748-1716.1952.tb00872.x. [DOI] [PubMed] [Google Scholar]
  19. KAO F. F., RAY L. H. Respiratory and circulatory responses of anesthetized dogs to induced muscular work. Am J Physiol. 1954 Nov;179(2):249–254. doi: 10.1152/ajplegacy.1954.179.2.249. [DOI] [PubMed] [Google Scholar]
  20. LEUSEN I., DEMEESTER G., BOUCKAERT J. J. Influence du travail musculaire sur la circulation et la respiration chez le chien. Acta Cardiol. 1958;13(2):153–172. [PubMed] [Google Scholar]
  21. Pérez-González J. F., Coote J. H. Activity of muscle afferents and reflex circulatory responses to exercise. Am J Physiol. 1972 Jul;223(1):138–143. doi: 10.1152/ajplegacy.1972.223.1.138. [DOI] [PubMed] [Google Scholar]
  22. RAMSEY L. H. Analysis of gas in biological fluids by gas chromatography. Science. 1959 Apr 3;129(3353):900–901. doi: 10.1126/science.129.3353.900. [DOI] [PubMed] [Google Scholar]
  23. REEVES J. T., GROVER R. F., BLOUNT S. G., Jr, FILLEY G. F. Cardiac output response to standing and treadmill walking. J Appl Physiol. 1961 Mar;16:283–288. doi: 10.1152/jappl.1961.16.2.283. [DOI] [PubMed] [Google Scholar]
  24. Richardson D. W., Kontos H. A., Raper A. J., Patterson J. L., Jr Systemic circulatory responses to hypocapnia in man. Am J Physiol. 1972 Dec;223(6):1308–1312. doi: 10.1152/ajplegacy.1972.223.6.1308. [DOI] [PubMed] [Google Scholar]
  25. SHADLE O. W., FERGUSON T. B., GREGG D. E., GILFORD S. R. Evaluation of a new cuvette densitometer for determination of cardiac output. Circ Res. 1953 May;1(3):200–205. doi: 10.1161/01.res.1.3.200. [DOI] [PubMed] [Google Scholar]
  26. SLATER E. C. Mechanism of uncoupling of oxidative phosphorylation by nitrophenols. Comp Biochem Physiol. 1962 Oct;4:281–301. doi: 10.1016/0010-406x(62)90011-7. [DOI] [PubMed] [Google Scholar]
  27. Scott J. C., Gold M., Bechtel A. A., Spitzer J. J. Influence of 2,4-dinitrophenol on myocardial metabolism and hemodynamics. Metabolism. 1968 Apr;17(4):370–376. doi: 10.1016/0026-0495(68)90107-8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES