Abstract
The effects of oxytocin upon tissue cAMP content and short-circuit current (SCC) were measured in the urinary bladder of the toad, Bufo marinus. Tissue cAMP levels doubled before any increment in SCC was observed, the two hormone responses were quantitatively related, and a threshold level for an effect of cAMP upon sodium transport was demonstrated. The period of time over which cAMP levels continued to rise after the threshold level had been attained seemed invariant with hormone concentration. The rate at which cAMP levels rose increased with hormone concentration yielding hormone concentration-dependent maximal levels. The decay of cAMP levels was delayed when sodium influx was curtailed, suggesting a sodium-regulatory effect upon tissue cAMP levels.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BENTLEY P. J. The effects of neurohypophysial extracts on the water transfer across the wall of the isolated urinary bladder of the toad Bufo marinus. J Endocrinol. 1958 Sep;17(3):201–209. doi: 10.1677/joe.0.0170201. [DOI] [PubMed] [Google Scholar]
- Bentley P. J. Amiloride: a potent inhibitor of sodium transport across the toad bladder. J Physiol. 1968 Mar;195(2):317–330. doi: 10.1113/jphysiol.1968.sp008460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bär H. P., Hechter O., Schwartz I. L., Walter R. Neurohypophyseal hormone-sensitive adenyl cyclase of toad urinary bladder. Proc Natl Acad Sci U S A. 1970 Sep;67(1):7–12. doi: 10.1073/pnas.67.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dousa T. P. Effect of renal medullary solutes on vasopressin-sensitive adenyl cyclase. Am J Physiol. 1972 Mar;222(3):657–662. doi: 10.1152/ajplegacy.1972.222.3.657. [DOI] [PubMed] [Google Scholar]
- Eggena P., Schwartz I. L., Walter R. Threshold and receptor reserve in the action of neurohypophyseal peptides. A study of synergists and antagonists of the hydroosmotic response of the toad urinary bladder. J Gen Physiol. 1970 Aug;56(2):250–271. doi: 10.1085/jgp.56.2.250. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grahame-Smith D. G., Butcher R. W., Ney R. L., Sutherland E. W. Adenosine 3',5'-monophosphate as the intracellular mediator of the action of adrenocorticotropic hormone on the adrenal cortex. J Biol Chem. 1967 Dec 10;242(23):5535–5541. [PubMed] [Google Scholar]
- Handler J. S., Butcher R. W., Sutherland E. W., Orloff J. The effect of vasopressin and of theophylline on the concentration of adenosine 3',5'-phosphate in the urinary bladder of the toad. J Biol Chem. 1965 Nov;240(11):4524–4526. [PubMed] [Google Scholar]
- LEAF A., ANDERSON J., PAGE L. B. Active sodium transport by the isolated toad bladder. J Gen Physiol. 1958 Mar 20;41(4):657–668. doi: 10.1085/jgp.41.4.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ORLOFF J., HANDLER J. S. The similarity of effects of vasopressin, adenosine-3',5'-phosphate (cyclic AMP) and theophylline on the toad bladder. J Clin Invest. 1962 Apr;41:702–709. doi: 10.1172/JCI104528. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SUTHERLAND E. W., OYE I., BUTCHER R. W. THE ACTION OF EPINEPHRINE AND THE ROLE OF THE ADENYL CYCLASE SYSTEM IN HORMONE ACTION. Recent Prog Horm Res. 1965;21:623–646. [PubMed] [Google Scholar]
- Steiner A. L., Kipnis D. M., Utiger R., Parker C. Radioimmunoassay for the measurement of adenosine 3',5'-cyclic phosphate. Proc Natl Acad Sci U S A. 1969 Sep;64(1):367–373. doi: 10.1073/pnas.64.1.367. [DOI] [PMC free article] [PubMed] [Google Scholar]