Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1974 Mar;53(3):875–883. doi: 10.1172/JCI107628

Evidence for a Structural Requirement for the Aggregation of Platelets by Collagen

Russell Jaffe 1,2, Daniel Deykin 1,2
PMCID: PMC333070  PMID: 4855862

Abstract

This study investigates whether soluble collagen can initiate platelet aggregation or whether a higher degree of polymerization is required. Purified rat skin collagen was prepared in four states. Soluble monomeric collagen, containing 2 μM calcium chloride, was maintained at 4°C until use. A previously uncharacterized form of collagen, soluble microfibrillar collagen, was prepared from monomeric collagen containing calcium chloride by allowing it to polymerize at 23°C. Viscometric and electron microscopic characterization of microfibrillar collagen indicated polymerization to ordered native filaments. Particulate native macrofibrillar collagen was prepared from monomeric collagen by allowing it to polymerize at 37°C in the absence of calcium. Particulate collagen, in which the fibers were randomly associated, was prepared by salt precipitation of calcium-free monomeric collagen. Microfibrillar and native macrofibrillar collagen initiated platelet aggregation, with a lag phase of approximately 60 s. Monomeric collagen initiated aggregation with a lag phase of approximately 180 s. The duration of the lag phase for platelet aggregation initiated by monomeric collagen was independent of the dose. Salt-precipitated particulate collagen did not initiate platelet aggregation. Agents which prolong the transition from monomeric collagen to fibrillar collagen (urea, arginine) retarded or prevented the aggregation of platelets by monomeric collagen. Sodium borohydride, which stabilizes the intraand intermolecular cross-links of collagen did not affect platelet aggregation. Penicillamine, which displaces the intermolecular cross-links and binds the intramolecular cross-links of collagen, did not prevent platelet aggregation. The data suggest that an architectural requirement exists for the initiation of self-perpetuating platelet aggregation; that tropocollagen units do not fulfill this requirement; that a soluble collagen preparation, microfibrillar collagen, contains the minimal structural unit; and that cross-linkages within collagen do not play a critical role in platelet aggregation.

Full text

PDF
875

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BORN G. V., CROSS M. J. THE AGGREGATION OF BLOOD PLATELETS. J Physiol. 1963 Aug;168:178–195. doi: 10.1113/jphysiol.1963.sp007185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barber A. J., Jamieson G. A. Platelet collagen adhesion characterization of collagen glucosyltransferase of plasma membranes of human blood platelets. Biochim Biophys Acta. 1971 Dec 21;252(3):533–545. doi: 10.1016/0304-4165(71)90156-5. [DOI] [PubMed] [Google Scholar]
  3. Baumgartner H. R., Haudenschild C. Adhesion of platelets to subendothelium. Ann N Y Acad Sci. 1972 Oct 27;201:22–36. doi: 10.1111/j.1749-6632.1972.tb16285.x. [DOI] [PubMed] [Google Scholar]
  4. Blumenfeld O. O., Gallop P. M. Amino aldehydes in tropocollagen: the nature of a probable cross-link. Proc Natl Acad Sci U S A. 1966 Oct;56(4):1260–1267. doi: 10.1073/pnas.56.4.1260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chesney C. M., Harper E., Colman R. W. Critical role of the carbohydrate side chains of collagen in platelet aggregation. J Clin Invest. 1972 Oct;51(10):2693–2701. doi: 10.1172/JCI107088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Franzblau C., Kang A. H., Faris B. In vitro formation of intermolecular crosslinks in chick skin collagen. II. Kinetics. Biochem Biophys Res Commun. 1970 Jul 27;40(2):437–444. doi: 10.1016/0006-291x(70)91028-4. [DOI] [PubMed] [Google Scholar]
  7. GROSS J., KIRK D. The heat precipitation of collagen from neutral salt solutions: some rate-regulating factors. J Biol Chem. 1958 Aug;233(2):355–360. [PubMed] [Google Scholar]
  8. GROSS J. ORGANIZATION AND DISORGANIZATION OF COLLAGEN. Biophys J. 1964 Jan;4:SUPPL63–SUPPL77. doi: 10.1016/s0006-3495(64)86928-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grant M. E., Prockop D. J. The biosynthesis of collagen. 2. N Engl J Med. 1972 Feb 3;286(5):242–249. doi: 10.1056/NEJM197202032860505. [DOI] [PubMed] [Google Scholar]
  10. HOVIG T. AGGREGATION OF RABBIT BLOOD PLATELETS PRODUCED IN VITRO BY SALINE "EXTRACT" OF TENDONS. Thromb Diath Haemorrh. 1963 Jul 15;143:248–263. [PubMed] [Google Scholar]
  11. HUGUES J. [Binding of platelets to collagen]. C R Seances Soc Biol Fil. 1960;154:866–868. [PubMed] [Google Scholar]
  12. Jamieson G. A., Urban C. L., Barber A. J. Enzymatic basis for platelet: collagen adhesion as the primary step in haemostasis. Nat New Biol. 1971 Nov 3;234(44):5–7. doi: 10.1038/newbio234005a0. [DOI] [PubMed] [Google Scholar]
  13. Kahn L. D., Witnauer L. P. The viscometric behavior of solubilized calf skin collagen at low rates of shear. J Biol Chem. 1966 Apr 25;241(8):1784–1789. [PubMed] [Google Scholar]
  14. Katzman R. L., Kang A. H., Beachey E. H. Collagen-induced platelet aggregation: involement of an active glycopeptide fragment (alpha1-CB5). Science. 1973 Aug 17;181(4100):670–672. doi: 10.1126/science.181.4100.670. [DOI] [PubMed] [Google Scholar]
  15. Legrand Y., Caen J. P., Robert L. Effect of glucosamine on platelet-collagen reaction. Proc Soc Exp Biol Med. 1968 Mar;127(3):941–943. doi: 10.3181/00379727-127-32840. [DOI] [PubMed] [Google Scholar]
  16. Narayanan A. S., Siegel R. C., Martin G. R. On the inhibition of lysyl oxidase by -aminopropionitrile. Biochem Biophys Res Commun. 1972 Jan 31;46(2):745–751. doi: 10.1016/s0006-291x(72)80203-1. [DOI] [PubMed] [Google Scholar]
  17. O'brien J. R. Platelet aggregation: Part I Some effects of the adenosine phosphates, thrombin, and cocaine upon platelet adhesiveness. J Clin Pathol. 1962 Sep;15(5):446–452. doi: 10.1136/jcp.15.5.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. PROCKOP D. J., UDENFRIEND S. A specific method for the analysis of hydroxyproline in tissues and urine. Anal Biochem. 1960 Nov;1:228–239. doi: 10.1016/0003-2697(60)90050-6. [DOI] [PubMed] [Google Scholar]
  19. Pease D. C., Bouteille M. The tridimensional ultrastructure of native collagenous fibrils, cytochemical evidence for a carbohydrate matrix. J Ultrastruct Res. 1971 May;35(3):339–358. doi: 10.1016/s0022-5320(71)80162-4. [DOI] [PubMed] [Google Scholar]
  20. Rauterberg J., Kühn K. The renaturation behaviour of modified collagen molecules. Hoppe Seylers Z Physiol Chem. 1968 May;349(5):611–622. doi: 10.1515/bchm2.1968.349.1.611. [DOI] [PubMed] [Google Scholar]
  21. SPAET T. H., CINTRON J., SPIVACK M. Some properties of the platelet-connective tissue mixed agglutination reaction. Proc Soc Exp Biol Med. 1962 Nov;111:292–295. doi: 10.3181/00379727-111-27771. [DOI] [PubMed] [Google Scholar]
  22. SPAET T. H., ZUCKER M. B. MECHANISM OF PLATELET PLUG FORMATION AND ROLE OF ADENOSINE DIPHOSPHATE. Am J Physiol. 1964 Jun;206:1267–1274. doi: 10.1152/ajplegacy.1964.206.6.1267. [DOI] [PubMed] [Google Scholar]
  23. Wilner G. D., Nossel H. L., LeRoy E. C. Aggregation of platelets by collagen. J Clin Invest. 1968 Dec;47(12):2616–2621. doi: 10.1172/JCI105944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wilner G. D., Nossel H. L., Procupez T. L. Aggregation of platelets by collagen: polar active sites of insoluble human collagen. Am J Physiol. 1971 Apr;220(4):1074–1079. doi: 10.1152/ajplegacy.1971.220.4.1074. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES