Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1975 Dec;56(6):1509–1518. doi: 10.1172/JCI108232

Immune responses to the cleavage-associated neoantigens of fibrinogen in man. Identification and characterization of humoral antibodies specific for cleavage fragments.

E F Plow, T S Edgington
PMCID: PMC333129  PMID: 53241

Abstract

Cleavage of human fibrinogen and fibrin by plasmin is associated with modification of native antigenic expression and the exposure of cleavage-associated neoantigenic sites on the derivative molecular fragments. In this study, the presence of humoral antibodies in man to cleavage-associated neoantigens has been demonstrated by primary antigen binding radioimmunochemical assays. Specific binding of radioiodinated human fibrinogen D fragment by serum immunoglobulins was demonstrated in 52 of 59 random normal human sera and was independent of immunoglobulin concentration. Binding was mediated by F (ab)2 fragments of IgG, and specificity for neoantigens was indicated by the capacity of the D fragment but not native fibrinogen to competitively inhibit the antibody. The population distribution of antibody to these cleavage-associated neoantigens indicated the presence of a major group of individuals (77%) with a mean antigen binding capacity of 11.8 pmol/ml serum. Two minor populations with : (a) low or undetectable binding capacities (less than 6.0 pmol/ml serum) and (b) exhibiting markedly elevated binding capacities (less 18.0 pmol/ml serum) were delineated. Independent of these features, sera could also be readily separated into two groups that differed with respect to relative antibody affinity. The antibodies in most sera exhibited marked heterogeneity of binding affinity, whereas a small group of sera contained antibodies exhibiting relative homogeneity of binding affinity. Specific antibody was rather equally distributed between the major immunoglobulin classes, and in no serum was the antibody restricted to a single immunoglobulin class. Antibodies capable of binding fibrinogen fragments X, Y, and D and fibrin D fragment were detected in most sera. The quantity of antibody differed for different fragments with X greater than Y congruent to D greater than fibrin D. The presence of antibody capable of binding any single fragment was statistically correlated with the presence of antibody capable of binding other cleavage fragments. No antibody to the E fragment was detected. Antibody to cleavage fragments was not demonstrable in sera containing fibrinogen or fibrin cleavage fragments. Demonstration of this humoral immune response to the products of the fibrinolytic systems provides a new interface between the coagulation and immune system.

Full text

PDF
1509

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cash J. D., Clarkson A. R. Serum and urinary fibrin-fibrinogen degradation products in renal disease. Scand J Haematol Suppl. 1971;13:331–336. doi: 10.1111/j.1600-0609.1971.tb02032.x. [DOI] [PubMed] [Google Scholar]
  2. Cash J. D. Effect of moderate exercise on the fibrinolytic system in normal young men and women. Br Med J. 1966 Aug 27;2(5512):502–506. doi: 10.1136/bmj.2.5512.502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cash J. D., Woodfield D. G., Das P. C., Allan A. G. Diagnosis of suspected or occult pulmonary embolus. Br Med J. 1969 May 31;2(5656):576–576. doi: 10.1136/bmj.2.5656.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chakrabarti R., Hocking E. D., Fearnley G. R. Reaction pattern to three stresses--electroplexy, surgery, and myocardial infarction--of fibrinolysis and plasma fibrinogen. J Clin Pathol. 1969 Nov;22(6):659–662. doi: 10.1136/jcp.22.6.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Crawford I. P. Purification and properties of normal human alpha 1-antitrypsin. Arch Biochem Biophys. 1973 May;156(1):215–222. doi: 10.1016/0003-9861(73)90359-7. [DOI] [PubMed] [Google Scholar]
  6. De Heer D. H., Edgington T. S. Clonal heterogeneity of the anti-erythrocyte autoantibody responses of NZB mice. J Immunol. 1974 Oct;113(4):1184–1189. [PubMed] [Google Scholar]
  7. Edgington T. S., Dalessio D. J. The assessment by immunofluorescence methods of humoral anti-myelin antibodies in man. J Immunol. 1970 Jul;105(1):248–255. [PubMed] [Google Scholar]
  8. Edgington T. S., Plow E. F. Conformational and structural modulation of the NH2-terminal regions of fibrinogen and fibrin associated with plasmin cleavage. J Biol Chem. 1975 May 10;250(9):3393–3398. [PubMed] [Google Scholar]
  9. Gaffney P. J., Chesterman C. N., Allington M. J. Plasma fibrinogen and its fragments during streptokinase treatment. Br J Haematol. 1974 Feb;26(2):285–293. doi: 10.1111/j.1365-2141.1974.tb00473.x. [DOI] [PubMed] [Google Scholar]
  10. Gasser D. L., Silvers W. K. Genetic determinants of immunological responsiveness. Adv Immunol. 1974;18:1–66. doi: 10.1016/s0065-2776(08)60307-7. [DOI] [PubMed] [Google Scholar]
  11. Henney C. S., Stanworth D. R. Effect of antigen on the structural configuration of homologous antibody following antigen-antibody combination. Nature. 1966 Jun 4;210(5040):1071–1072. doi: 10.1038/2101071a0. [DOI] [PubMed] [Google Scholar]
  12. Henney C. S., Stanworth D. R. The reactivity of rheumatoid factor with human gamma G globulin. Immunology. 1965 Aug;9(2):139–150. [PMC free article] [PubMed] [Google Scholar]
  13. Hirose S. I., Osler A. G. Interaction of rabbit anti-human H chain sera with denatured human gamma-globulin and its subunits. J Immunol. 1967 Mar;98(3):618–627. [PubMed] [Google Scholar]
  14. ISHIZAKA T., CAMPBELL D. H., ISHIZAKA K. Internal antigenic determinants in protein molecules. Proc Soc Exp Biol Med. 1960 Jan;103:5–9. doi: 10.3181/00379727-103-25394. [DOI] [PubMed] [Google Scholar]
  15. Lawrence T. G., Jr, Williams R. C., Jr Studies of human anti-gamma-globulin factors reacting with pepsin-digested gamma-globulins. J Exp Med. 1967 Feb 1;125(2):233–248. doi: 10.1084/jem.125.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Litwin S. D. Anti-globulin antibodies detecting hidden gamma G antigens: characterization of the "pepsin site" by different immune antisera. Immunology. 1970 Sep;19(3):511–517. [PMC free article] [PubMed] [Google Scholar]
  17. Marder V. J., Shulman N. R., Carroll W. R. High molecular weight derivatives of human fibrinogen produced by plasmin. I. Physicochemical and immunological characterization. J Biol Chem. 1969 Apr 25;244(8):2111–2119. [PubMed] [Google Scholar]
  18. McConahey P. J., Dixon F. J. A method of trace iodination of proteins for immunologic studies. Int Arch Allergy Appl Immunol. 1966;29(2):185–189. doi: 10.1159/000229699. [DOI] [PubMed] [Google Scholar]
  19. McIntosh R. M., Grossman B. IgG, 1 C, fibrinogen cryoprotein in acute glomerulonephritis. N Engl J Med. 1971 Dec 30;285(27):1521–1522. doi: 10.1056/NEJM197112302852707. [DOI] [PubMed] [Google Scholar]
  20. Mosesson M. W., Finlayson J. S., Umfleet R. A., Galanakis D. Human fibrinogen heterogeneities. I. Structural and related studies of plasma fibrinogens which are high solubility catabolic intermediates. J Biol Chem. 1972 Aug 25;247(16):5210–5219. [PubMed] [Google Scholar]
  21. NILSSON U. R., MUELLER-EBERHARD H. J. ISOLATION OF BETA IF-GLOBULIN FROM HUMAN SERUM AND ITS CHARACTERIZATION AS THE FIFTH COMPONENT OF COMPLEMENT. J Exp Med. 1965 Aug 1;122:277–298. doi: 10.1084/jem.122.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. NUSSENZWEIG V., SELIGMANN M., PELMONT J., GRABAR P. [The products of degradation of human fibrinogen by plasmin. I. Separation and physicochemical properties]. Ann Inst Pasteur (Paris) 1961 Mar;100:377–389. [PubMed] [Google Scholar]
  23. Neumann G. J. The determination of normal ranges from routine laboratory data. Clin Chem. 1968 Oct;14(10):979–988. [PubMed] [Google Scholar]
  24. OSTERLAND C. K., HARBOE M., KUNKEL H. G. Anti-gamma-globulin factors in human sera revealed by enzymatic splitting of anti-Rh antibodies. Vox Sang. 1963 Mar-Apr;8:133–152. doi: 10.1111/j.1423-0410.1963.tb03290.x. [DOI] [PubMed] [Google Scholar]
  25. Pitney W. R. Disseminated intravascular coagulation. Semin Hematol. 1971 Jan;8(1):65–83. [PubMed] [Google Scholar]
  26. Pizzo S. V., Schwartz M. L., Hill R. L., McKee P. A. The effect of plasmin on the subunit structure of human fibrinogen. J Biol Chem. 1972 Feb 10;247(3):636–645. [PubMed] [Google Scholar]
  27. Plow E. F., Edgington T. S. A cleavage-associated neoantigenic marker for a gamma chain site in the NH2-terminal aspect of the fibrinogen molecule. J Biol Chem. 1975 May 10;250(9):3386–3392. [PubMed] [Google Scholar]
  28. Plow E. F., Edgington T. S. Discriminating neoantigenic differences between fibrinogen and fibrin derivatives. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1169–1173. doi: 10.1073/pnas.70.4.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Plow E. F., Hougie C., Edgington T. S. Neoantigenic expressions engendered by plasmin cleavage of fibrinogen. J Immunol. 1971 Nov;107(5):1496–1500. [PubMed] [Google Scholar]
  30. Plow E., Edgington T. S. Immunobiology of fibrinogen. Emergence of neoantigenic expressions during physiologic cleavage in vitro and in vivo. J Clin Invest. 1973 Feb;52(2):273–282. doi: 10.1172/JCI107183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Plow E., Edgington T. S. Molecular events responsible for modulation of neoantigenic expression: the cleavage-associated neoantigen of fibrinogen (blood coagulation-fibrinogen cleavage products-fibrinolysis-molecular conformation). Proc Natl Acad Sci U S A. 1972 Jan;69(1):208–212. doi: 10.1073/pnas.69.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Roberts I. M., Whittingham S., Mackay I. R. Tolerance to an autoantigen-thyroglobulin. Antigen-binding lymphocytes in thymus and blood in health and autoimmune disease. Lancet. 1973 Oct 27;2(7835):936–940. doi: 10.1016/s0140-6736(73)92598-1. [DOI] [PubMed] [Google Scholar]
  33. Ruckley C. V., Das P. C., Leitch A. G., Donaldson A. A., Copland W. A., Redpath A. T., Scott P., Cash J. D. Serum fibrin-fibrinogen degradation products associated with postoperative pulmonary embolus and venous thrombosis. Br Med J. 1970 Nov 14;4(5732):395–398. doi: 10.1136/bmj.4.5732.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Salmon J., Lambert P. H. Determination of fibrinogen derivatives by immunofluorescence in experimental and clinical kidney disorders. Scand J Haematol Suppl. 1971;13:351–356. doi: 10.1111/j.1600-0609.1971.tb02035.x. [DOI] [PubMed] [Google Scholar]
  35. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  36. Weigle W. O. Immunological unresponsiveness. Adv Immunol. 1973;16:61–122. doi: 10.1016/s0065-2776(08)60296-5. [DOI] [PubMed] [Google Scholar]
  37. Wilson C. B., Dixon F. J. Diagnosis of immunopathologic renal disease. Kidney Int. 1974 Jun;5(6):389–401. doi: 10.1038/ki.1974.57. [DOI] [PubMed] [Google Scholar]
  38. Yamada H., Yamada A., Hollander V. P. 2,4-dinitrophenyl-hapten specific hemolytic plaque-in-gel formation by mouse myeloma (MOPC-315) cells. J Immunol. 1970 Jan;104(1):251–255. [PubMed] [Google Scholar]
  39. Yoshikawa T., Tanaka K. R., Guze L. B. Infection and disseminated intravascular coagulation. Medicine (Baltimore) 1971 Jul;50(4):237–258. doi: 10.1097/00005792-197107000-00001. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES