Abstract
The purpose of this study was to examine the molecular parameters necessary for initiation of complement fixation by IgM proteins. To determine why some IgM molecules are capable of complement fixation while others are not, several different Waldenström IgM proteins were examined for their ability to fix total hemolytic complement in the CH(50) assay. Subsequently, the C1 fixing ability of a 56-residue fragment derived from the Cmu4 domain of each of these IgM molecules was studied with C1 fixation assay. One of the three Waldenström IgM proteins (Gr) used in the present study was found unable to consume complement in a CH(50) assay when tested at the same concentration as the two complement-consuming IgM molecules (Dau and Bus). However, when the 56-residue C(H)4 fragment from the Cmu4 domain of each IgM molecule was tested for C1-fixing ability, all three were found to bind C1. On the basis of these observations, it is proposed that a C1 binding site exists within the Cmu4 domain of both complement-fixing and noncomplement-fixing IgM molecules. Presumably, the latter molecules are unable to interact in their native state with C1 in the manner required for initiation of the classical complement pathway, possibly due to the configurational inaccessibility of the entire C1 binding site.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Augener W., Grey H. M., Cooper N. R., Müller-Eberhard H. J. The reaction of monomeric and aggregated immunoglobulins with C1. Immunochemistry. 1971 Nov;8(11):1011–1020. doi: 10.1016/0019-2791(71)90489-7. [DOI] [PubMed] [Google Scholar]
- Borsos T., Rapp H. J. Immune hemolysis: a simplified method for the preparation of EAC'4 with guinea pig or with human complement. J Immunol. 1967 Aug;99(2):263–268. [PubMed] [Google Scholar]
- Colombani J., Colombani M., Dausset J. Non-complement-fixing IgM antibodies with anti-HL-A2 specificity and blocking activity. Transplantation. 1973 Sep;16(3):257–260. doi: 10.1097/00007890-197309000-00014. [DOI] [PubMed] [Google Scholar]
- Edelman G. M., Cunningham B. A., Gall W. E., Gottlieb P. D., Rutishauser U., Waxdal M. J. The covalent structure of an entire gammaG immunoglobulin molecule. Proc Natl Acad Sci U S A. 1969 May;63(1):78–85. doi: 10.1073/pnas.63.1.78. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellerson J. R., Yasmeen D., Painter R. H., Dorrington K. J. A fragment corresponding to the C(H)2 region of immunoglobulin G (IgG) with complement fixing activity. FEBS Lett. 1972 Aug 15;24(3):318–322. doi: 10.1016/0014-5793(72)80381-8. [DOI] [PubMed] [Google Scholar]
- Florent G., Lehman D., Lockhart D., Putnam F. W. Identity of the Fc fragments of pathological and normal human immunoglobulin M. Biochemistry. 1974 Jul 30;13(16):3372–3381. doi: 10.1021/bi00713a030. [DOI] [PubMed] [Google Scholar]
- Hester R. B., Mole J. E., Schrohenloher R. E. Evidence for the absence of noncovalent bonds in the Fcmu region of IgM. J Immunol. 1975 Jan;114(1 Pt 2):486–491. [PubMed] [Google Scholar]
- Hurst M. M., Volanakis J. E., Hester R. B., Stroud R. M., Bennett J. C. The structural basis for binding of complement by immunoglobulin M. J Exp Med. 1974 Oct 1;140(4):1117–1121. doi: 10.1084/jem.140.4.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hurst M. M., Volanakis J. E., Stroud R. M., Bennett J. C. C1 fixation and classical complement pathway activation by a fragment of the Cmu4 domain of IgM. J Exp Med. 1975 Nov 1;142(5):1322–1326. doi: 10.1084/jem.142.5.1322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Isenman D. E., Dorrington K. J., Painter R. H. The structure and function of immunoglobulin domains. II. The importance of interchain disulfide bonds and the possible role of molecular flexibility in the interaction between immunoglobulin G and complement. J Immunol. 1975 Jun;114(6):1726–1729. [PubMed] [Google Scholar]
- Isenman D. E., Painter R. H., Dorrington K. J. The structure and function of immunoglobulin domains: studies with beta-2-microglobulin on the role of the intrachain disulfide bond. Proc Natl Acad Sci U S A. 1975 Feb;72(2):548–552. doi: 10.1073/pnas.72.2.548. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacKenzie M. R., Creevy N., Heh M. The interaction of human IgM and C1q. J Immunol. 1971 Jan;106(1):65–68. [PubMed] [Google Scholar]
- Maizel J. V., Jr Acrylamide-gel electrophorograms by mechanical fractionation: radioactive adenovirus proteins. Science. 1966 Feb 25;151(3713):988–990. doi: 10.1126/science.151.3713.988. [DOI] [PubMed] [Google Scholar]
- Nelson R. A., Jr, Jensen J., Gigli I., Tamura N. Methods for the separation, purification and measurement of nine components of hemolytic complement in guinea-pig serum. Immunochemistry. 1966 Mar;3(2):111–135. doi: 10.1016/0019-2791(66)90292-8. [DOI] [PubMed] [Google Scholar]
- Plaut A. G., Cohen S., Tomasi T. B., Jr Immunoglobulin M: fixation of human complement by the Fc fragment. Science. 1972 Apr 7;176(4030):55–56. doi: 10.1126/science.176.4030.55. [DOI] [PubMed] [Google Scholar]
- Plaut A. G., Tomasi T. B., Jr Immunoglobulin M: pentameric Fcmu fragments released by trypsin at higher temperatures. Proc Natl Acad Sci U S A. 1970 Feb;65(2):318–322. doi: 10.1073/pnas.65.2.318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tamura N., Nelson R. A., Jr The purification and reactivity of the first component of complement from guinea pig, human and canine sera. J Immunol. 1968 Dec;101(6):1333–1345. [PubMed] [Google Scholar]
- Tanimoto K., Cooper N. R., Johnson J. S., Vaughan J. H. Complement fixation by rheumatoid factor. J Clin Invest. 1975 Mar;55(3):437–445. doi: 10.1172/JCI107949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zikán J., Bennett J. C. Isolation of F(c)5mu and Fabmu fragments of human IgM. Eur J Immunol. 1973 Jul;3(7):415–419. doi: 10.1002/eji.1830030708. [DOI] [PubMed] [Google Scholar]
