Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1976 Jul;58(1):77–82. doi: 10.1172/JCI108462

The effect of hyperventilation on distal nephron hydrogen ion secretion.

R A Giammarco, M B Goldstein, M L Halperin, B J Stinebaugh
PMCID: PMC333157  PMID: 6492

Abstract

This study was designed to determine the effect of acute hyperventilation on distal nephron hydrogen ion secretion. The blood PCO2 declined and stabilized rapidly when bicarbonate loaded rats were hyperventilated. In contrast, the urine PCO2 declined slowly, resulting in an early increase in the urine minus blood (U-B) PCO2 which could not be obliterated by carbonic anhydrase infusion. Within approximately 50 min, the U-B PCO2 in the hyperventilated and carbonic anhydrase infused rats approached zero. Consequently, equilibrium between collecting duct urine and arterial blood PCO2 was then presumed to exist. This provided the basis for the subsequent studies on a series of rats. The U-B PCO2 decreased from a control of 22+/-1 mm Hg (mean+/-SEM) to 11+/-2 mm Hg (mean+/-SEM) with hypocapnia, and rose again to its control value when the blood PCO2 returned to prehyperventilation values. This decline in U-B PCO2 with acute hyperventilation could not be attributed to changes in urine flow, phosphate, or bicarbonate excretion, suggesting, therefore, a decrease in distal nephron (probably collecting duct) hydrogen ion secretion with acute hyperventilation. Possible pitfalls in the interpretation of the UB PCO2 are illustrated.

Full text

PDF
77

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arbus G. S., Herbert L. A., Levesque P. R., Etsten B. E., Schwartz W. B. Characterization and clinical application of the "significance band" for acute respiratory alkalosis. N Engl J Med. 1969 Jan 16;280(3):117–123. doi: 10.1056/NEJM196901162800301. [DOI] [PubMed] [Google Scholar]
  2. BARKER E. S., SINGER R. B., ELKINTON J. R., CLARK J. K. The renal response in man to acute experimental respiratory alkalosis and acidosis. J Clin Invest. 1957 Apr;36(4):515–529. doi: 10.1172/JCI103449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BRODSKY W. A., MILEY J. F., KAIM J. T., SHAH N. P. Characteristics of acidic urine after loading with weak organic acids in dogs; current concepts on renal mechanisms of acidification in relation to data on CO2 tension. Am J Physiol. 1958 Apr;193(1):108–122. doi: 10.1152/ajplegacy.1958.193.1.108. [DOI] [PubMed] [Google Scholar]
  4. Chan J. C. Urinary organic anions: clinical significance and evaluation of a method for determination and preservation. Clin Biochem. 1972 Sep;5(3):182–185. doi: 10.1016/s0009-9120(72)80029-8. [DOI] [PubMed] [Google Scholar]
  5. ELKINTON J. R., SINGER R. B., BARKER E. S., CLARK J. K. Effects in man of acute experimental respiratory alkalosis and acidosis on ionic transfers in the total body fluids. J Clin Invest. 1955 Nov;34(11):1671–1690. doi: 10.1172/JCI103221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gennari F. J., Goldstein M. B., Schwartz W. B. The nature of the renal adaptation to chronic hypocapnia. J Clin Invest. 1972 Jul;51(7):1722–1730. doi: 10.1172/JCI106973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Halperin M. L., Goldstein M. B., Haig A., Johnson M. D., Stinebaugh B. J. Studies on the pathogenesis of type I (distal) renal tubular acidosis as revealed by the urinary PCO2 tensions. J Clin Invest. 1974 Mar;53(3):669–677. doi: 10.1172/JCI107604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. KENNEDY T. J., Jr, ORLOFF J., BERLINER R. W. Significance of carbon dioxide tension in urine. Am J Physiol. 1952 Jun;169(3):596–608. doi: 10.1152/ajplegacy.1952.169.3.596. [DOI] [PubMed] [Google Scholar]
  9. MOREL F., MYLLE M., GOTTSCHALK C. W. TRACER MICROINJECTION STUDIES OF EFFECT OF ADH ON RENAL TUBULAR DIFFUSION OF WATER. Am J Physiol. 1965 Jul;209:179–187. doi: 10.1152/ajplegacy.1965.209.1.179. [DOI] [PubMed] [Google Scholar]
  10. Malnic G., De Mello Aires M., Giebisch G. Micropuncture study of renal tubular hydrogen ion transport in the rat. Am J Physiol. 1972 Jan;222(1):147–158. doi: 10.1152/ajplegacy.1972.222.1.147. [DOI] [PubMed] [Google Scholar]
  11. OCHWADT B. K., PITTS R. F. Effects of intravenous infusion of carbonic anhydrase on carbon dioxide tension of alkaline urine. Am J Physiol. 1956 May;185(2):426–429. doi: 10.1152/ajplegacy.1956.185.2.426. [DOI] [PubMed] [Google Scholar]
  12. PORTWOOD R. M., SELDIN D. W., RECTOR F. C., Jr, CADE R. The relation of urinary CO2 tension to bicarbonate excretion. J Clin Invest. 1959 May;38(5):770–776. doi: 10.1172/JCI103858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. RECTOR F. C., Jr, CARTER N. W., SELDIN D. W. THE MECHANISM OF BICARBONATE REABSORPTION IN THE PROXIMAL AND DISTAL TUBULES OF THE KIDNEY. J Clin Invest. 1965 Feb;44:278–290. doi: 10.1172/JCI105142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. RECTOR F. C., Jr, SELDIN D. W., ROBERTS A. D., Jr, SMITH J. S. The role of plasma CO2 tension and carbonic anhydrase activity in the renal reabsorption of bicarbonate. J Clin Invest. 1960 Nov;39:1706–1721. doi: 10.1172/JCI104193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. REID E. L., HILLS A. G. DIFFUSION OF CARBON DIOXIDE OUT OF THE DISTAL NEPHRON IN MAN DURING ANTIDIURESIS. Clin Sci. 1965 Feb;28:15–28. [PubMed] [Google Scholar]
  16. Roscoe J. M., Goldstein M. B., Halperin M. L., Wilson D. R., Stinebaugh B. J. Lithium-induced impairment of urine acidification. Kidney Int. 1976 Apr;9(4):344–350. doi: 10.1038/ki.1976.40. [DOI] [PubMed] [Google Scholar]
  17. STANBURY S. W., THOMSON A. E. The renal response to respiratory alkalosis. Clin Sci. 1952 Nov;11(4):357–374. [PubMed] [Google Scholar]
  18. Stein J. H., Reineck H. J. The role of the collecting duct in the regulation of excretion of sodium and other electrolytes. Kidney Int. 1974 Jul;6(1):1–9. doi: 10.1038/ki.1974.71. [DOI] [PubMed] [Google Scholar]
  19. THOMPSON D. D., BARRETT M. J. Renal reabsorption of bicarbonate. Am J Physiol. 1954 Feb;176(2):201–206. doi: 10.1152/ajplegacy.1954.176.2.201. [DOI] [PubMed] [Google Scholar]
  20. Uhlich E., Baldamus C. A., Ullrich K. J. Verhalten von CO2-Druck und Bicarbonat im Gegenstromysystem des Nierenmarks. Pflugers Arch. 1968;303(1):31–48. doi: 10.1007/BF00586825. [DOI] [PubMed] [Google Scholar]
  21. Vieira F. L., Malnic G. Hydrogen ion secretion by rat renal cortical tubules as studied by an antimony microelectrode. Am J Physiol. 1968 Apr;214(4):710–718. doi: 10.1152/ajplegacy.1968.214.4.710. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES