Skip to main content
Frontiers in Microbiology logoLink to Frontiers in Microbiology
. 2012 Apr 23;3:130. doi: 10.3389/fmicb.2012.00130

Secondary Metabolites from Plants Inhibiting ABC Transporters and Reversing Resistance of Cancer Cells and Microbes to Cytotoxic and Antimicrobial Agents

Michael Wink 1,*, Mohamed L Ashour 2, Mahmoud Zaki El-Readi 1,3
PMCID: PMC3332394  PMID: 22536197

Abstract

Fungal, bacterial, and cancer cells can develop resistance against antifungal, antibacterial, or anticancer agents. Mechanisms of resistance are complex and often multifactorial. Mechanisms include: (1) Activation of ATP-binding cassette (ABC) transporters, such as P-gp, which pump out lipophilic compounds that have entered a cell, (2) Activation of cytochrome p450 oxidases which can oxidize lipophilic agents to make them more hydrophilic and accessible for conjugation reaction with glucuronic acid, sulfate, or amino acids, and (3) Activation of glutathione transferase, which can conjugate xenobiotics. This review summarizes the evidence that secondary metabolites (SM) of plants, such as alkaloids, phenolics, and terpenoids can interfere with ABC transporters in cancer cells, parasites, bacteria, and fungi. Among the active natural products several lipophilic terpenoids [monoterpenes, diterpenes, triterpenes (including saponins), steroids (including cardiac glycosides), and tetraterpenes] but also some alkaloids (isoquinoline, protoberberine, quinoline, indole, monoterpene indole, and steroidal alkaloids) function probably as competitive inhibitors of P-gp, multiple resistance-associated protein 1, and Breast cancer resistance protein in cancer cells, or efflux pumps in bacteria (NorA) and fungi. More polar phenolics (phenolic acids, flavonoids, catechins, chalcones, xanthones, stilbenes, anthocyanins, tannins, anthraquinones, and naphthoquinones) directly inhibit proteins forming several hydrogen and ionic bonds and thus disturbing the 3D structure of the transporters. The natural products may be interesting in medicine or agriculture as they can enhance the activity of active chemotherapeutics or pesticides or even reverse multidrug resistance, at least partially, of adapted and resistant cells. If these SM are applied in combination with a cytotoxic or antimicrobial agent, they may reverse resistance in a synergistic fashion.

Keywords: ABC transporter, P-gp, MDR, MRP1, secondary metabolites, review

Introduction

Evolutionary and ecological background

Plants are sessile organisms which cannot run away when attacked by an herbivore nor do they have an immune system to combat infesting parasites, bacteria, fungi, or viruses. From early days of the evolution of land plants they had to cope with these environmental challenges. Plants developed a number of mechanical traits, such as resistant epidermal and bark tissues but also spines and thorns as defense tools. In addition, plants evolved a high diversity of defense chemicals, the so-called secondary metabolites (SM; Table 1). Besides defense, some SM function as signal compounds or protect against oxidative or UV stress (Wink, 1988, 2003, 2008b, 2010a,b).

Table 1.

Structural types of secondary metabolites and known structures.

Class Number of structures
WITH NITROGEN
Alkaloids 21000
Non-protein amino acids (NPAA) 700
Amines 100
Cyanogenic glucosides 60
Glucosinolates 100
Alkamides 150
Lectins, peptides 2000
WITHOUT NITROGEN
Monoterpenes (incl. iridoids) 2500
Sesquiterpenes 5000
Diterpenes 2500
Triterpenes, steroids, saponins 5000
Tetraterpenes 500
Phenylpropanoids, phenolic acids, coumarins, lignans 2000
Flavonoids, isoflavonoids, anthocyanins, stilbenoids, tannins, xanthones 10000
Polyacetylenes, fatty acids, waxes 1500
Polyketides (quinones, anthraquinones) 750
Carbohydrates, organic acids 400

The structures of SM have been optimized during evolution in such a way that they can interfere with molecular targets in herbivores and microbes. The main group of targets include (1) proteins, (2) DNA, RNA, and (3) the biomembrane (Wink, 2008a,b; Wink and Schimmer, 2010). Neuronal signal transduction is a central and specific target in animals and many SM, especially alkaloids and amines are directed toward it (Wink, 1993, 2000). SM which interfere with proteins, such as polyphenols, biomembranes (saponins and other lipophilic terpenoids), or DNA (alkylating or intercalating mutagens) affect a wider range of organisms, including animals and microbes. In general, membrane and DNA active SM have cytotoxic properties. Affected cells usually undergo apoptosis (Wink, 2007). Several SM interfere with the neuronal signal transduction in animals and are thus potent neurotoxins (Wink, 1993, 2000).

A large number of SM have lipophilic properties which enable them to readily pass biomembranes in target organisms by simple diffusion. These SM are also dangerous for the producing plants. Therefore, they are usually stored in dead tissue away from living cells, such as resin ducts, oil cells, trichomes, or cuticles (Wink, 2010b). The absorption of polar SM is usually slower or does not take place at all, with the exception of SM that can use transporters for sugars or amino acids or endocytosis as a kind of “stowaway.” Furthermore, SM usually occur in complex mixtures which may contain SM (such as saponins) that can facilitate the uptake of polar SM (Hebestreit and Melzig, 2003).

The response of herbivores and pathogens against plant defense chemicals

In the evolutionary arms race herbivores and microbes evolved mechanisms to avoid or inactivate the defense chemistry of plants. Mechanisms of resistance in animals and humans are complex and often multifactorial. Mechanisms include: (1) Activation of ATP-binding cassette (ABC) transporters, such as p-gp, which pump out lipophilic compounds that have entered a cell, (2) activation of cytochrome p450 oxidases (CYP) which can oxidize lipophilic agents to make them more hydrophilic and accessible for conjugation reaction with glucuronic acid, sulfate, or amino acids, and (3) activation of glutathione transferase (GST), which can conjugate xenobiotics with glutathione. The reactions of CYP, GST, and conjugation are well known in pharmacology and categorized as phase I and phase II reactions. These reactions are important in the metabolism of medicinal drugs and toxins. This evolutionary history also applies for humans which enables us to metabolize a large number of xenobiotics.

In phase I, a lipophilic SM is made more hydrophilic by introducing hydroxyl groups. This reaction is catalyzed by CYP and CYP1A1, CYP1A2, CYP3A4, and CYP2D6 are the most important enzymes. Furthermore, these CYP can cleave N-methyl, O-methyl, or methylene groups in order to obtain a more hydrophilic or better accessible substrate (Guengerich, 2001). In the human genome, about 57 active CYP genes are known (Ingelman-Sundberg and Gomez, 2010). A substantial polymorphism of CYPs exists which enables them to metabolize a wide range of xenobiotics. The regulation of the corresponding genes is only partly known. The genes encoding these enzymes, which occur in intestinal epithelia and in the liver, are inducible by SM that have entered the body. In phase II, the hydroxylated xenobiotics are conjugated with polar molecules, such as glutathione, sulfate, or glucuronic acid. These conjugates are eliminated via the kidneys and urine. That means, on exposure to lipophilic SM, genes which encode these enzymes are often induced and that activation can inactivate the toxins. Several SM carry methylenedioxy groups on their phenolic rings, such as in the isoquinoline alkaloids berberine and hydrastine, which are assumed to be inhibitors of CYP (Wink, 2007). Alkaloids which can inhibit CYP have been summarized by Wink (2007).

Resistance mechanisms in bacterial pathogens are even more evident because several pathogens already have evolved resistance against medicinally used antibiotics. The main mechanisms include:

  • Direct inactivation of the antibiotic, e.g., by cleavage of the beta-lactam ring of penicillin by beta-lactams or acetylation, methylation of other antibiotics

  • Target site modification: molecular change of the target molecule (proteins, rRNA) in such a way that the antibiotic cannot bind any longer

  • Bypass or alteration of metabolic pathways in cases where an antibiotic blocks a pathway (e.g., as for sulfonamides)

  • Prevention of drug uptake

  • Export out of the cell by ABC transporters so that the intracellular concentration of an antibiotic (e.g., tetracycline) are reduced. In Bacteria, this is one of several factors responsible for multidrug resistance (MDR).

ABC Transporter

Resistance against defense chemicals can be obtained through the expression of ABC transporters that are present in most cells and organisms. They are especially active in epithelia of intestinal, liver, kidney, and endothelia (Twentyman and Bleehen, 1991; Nielsen and Skovsgaard, 1992; Nooter and Stoter, 1996; Steinbach et al., 2002; You and Morris, 2007).

Three types of ABC transporters have been studied in detail:

  1. P-glycoprotein (P-gp; molecular weight 170 kD) or MDR1 protein (multiple drug resistance protein) was the first cloned ABC transporter. It is encoded by the ABCB1 gene. P-gp is composed of two similar moieties and each half contains one transmembrane and one ATP-binding domain. P-gp is an efflux pump directed to the gut lumen. The substrate molecules bind to transmembrane domains and then are exported to extracellular space, driven by the energy of ATP hydrolysis. A wide range of lipophilic chemotherapeutical agents, such as anthracenes, anthracyclines, epipodophyllotoxins, taxanes, and Vinca alkaloids, which can enter tumor cells by free diffusion, are substrates of P-gp and can be extruded by the transporter (Loo and Clarke, 2005).

  2. Multiple resistance-associated protein 1 (MRP1; 190 kD) is encoded by the ABCC1 gene. MRP1 transports drugs conjugated to glutathione (GSH), and also unmodified therapeutics in the presence of GSH (van der Kolk et al., 1999). MRP1 is structurally similar to P-gp, and can expel anthracenedione, anthracycline, epipodophyllotoxin, Vinca alkaloids, etc. (Wijnholds et al., 2000).

  3. Breast cancer resistance protein (BCRP; 72 kD) is the product of the ABCG2 gene. It has one transmembrane domain and one ATP-binding domain and only functions after dimerization. BCRP confers resistance to doxorubicin, camptothecin, and mitoxantrone (Ambudkar et al., 1999; Schinkel and Jonker, 2003; Mao and Unadkat, 2005; Krishnamurthy and Schuetz, 2006).

Breast cancer resistance protein and P-gp are highly expressed at the apical membrane of blood–brain barrier (BBB), placenta, liver, intestine, and other organs (Schinkel and Jonker, 2003). These ATP-driven transporters can pump lipophilic compounds out of the cell, either back to the gut lumen or into the blood system, thus reducing the intracellular concentration of potentially toxic compounds.

ATP-binding cassette transporters are also important at the BBB. The BBB only allows the entry of small lipophilic substances by passive diffusion. However, the uptake of lipophilic compounds in the brain is relatively low due to the high activity of P-gp, MRP, and organic anion transporting polypeptides (OATPs). These transporters catalyze a rapid efflux of lipophilic xenobiotics from the CNS (Elsinga et al., 2004; Mahringer and Fricker, 2010).

Multidrug resistance was discovered during chemotherapy of cancer patients who developed resistance against a cytotoxic drug. It transpired that the tumor cells were able to pump out the lipophilic alkaloids (such as Vinca alkaloids, taxanes, and anthracycline derivatives) at almost the same speed as they were entering the tumor cells. Activated cells became resistant to vincristine but also to several other lipophilic drugs. This means that a cross-resistance or MDR had occurred. As a consequence, a major obstacle to the successful chemotherapy of tumors is MDR. Upon exposure to xenobiotics MDR genes can become upregulated. Overexpressed ABC transporters (P-gp, MRP1, or BCRP) can mediate resistance of tumor cells against a variety of anticancer drugs (Schinkel and Jonker, 2003). This phenomenon is called MDR, which is one of the most important reasons of chemotherapy failure (Gottesman, 2002).

Several of human protozoal parasites (Plasmodium, Leishmania, Trypanosoma) can develop resistance against prophylactic and therapeutic agents, such as quinolines, naphthoquinones, sesquiterpene lactones, and others. The underlying mechanism includes membrane glycoproteins that are orthologous to human P-gp. These ABC transporters can also be induced and activated.

ATP-binding cassette transporters are also present in bacteria and fungi in which they confer resistance to antibiotics and fungicidal compounds (Steffens et al., 1996). A medicinally important issue is the increasing resistance of bacteria toward antibiotics, and ABC transporters can be involved in bacterial MDR (besides other mechanisms discussed above). Apparently, ABC transporters are an old invention of nature, which occur from E. coli to Homo sapiens.

Overcoming Resistance Caused by ABC Transporters

Multidrug resistance reversal agents are also called chemosensitizers or modulators. They can inhibit the efflux activity of transporters and other relevant MDR targets (see above); in consequence they can potentiate cytotoxicity, and are therefore important alternatives to overcome MDR (Watanabe et al., 1995; Dantzig et al., 1996; Robert and Jarry, 2003).

Multi-resistant tumor cells frequently express different ABC transporters simultaneously, e.g., P-gp, MRP1, BCRP, and others (Annereau et al., 2004; Gillet et al., 2004). Because the substrate spectra of ABC transporters only partly overlap, co-expression of transporters might produce more diverse resistance profiles than those of any one member alone. Thus broad-spectrum reversal agents are needed and some compounds exhibit this property (Hyafil et al., 1993; Maliepaard et al., 2001; Brooks et al., 2003).

A number of natural or synthetic compounds have been discovered that can inhibit P-gp and re-sensitize resistant tumor cells in vitro (Chauffert et al., 1990; Genne et al., 1992; He and Liu, 2002; Wink, 2007). Although these agents work successfully in some patients, most results of clinical trials were disappointing (Solary et al., 2000; Dantzig et al., 2001). Some of these reversal agents did not work in vivo or some had too severe side effects. Therefore, new and better reversal agents are still needed.

Most modulators of ABC transporters act by binding to membrane transport proteins (especially P-gp, MRP1, and BCRP) as competitive inhibitors, or by indirect mechanisms related to phosphorylation of the transport proteins, or the expression of the mdr1 and mrp1 genes. Other inhibitors not only act at the level of the transporter gene but influence their expression; for example, the alkaloid piperine lowered the expression levels of ABCB1, ABCC1, and ABCG2 genes which encode P-gp, MRP1, and BCRP (Li et al., 2011b).

Inhibitors of ABC Transporters from Plants

For this review we carried out a comprehensive literature research. Table 2 summarizes the search results for SM from plants, which can serve as ABC transporter substrates and might be useful in strategies to reverse drug resistance in cancer cells, fungi, and parasites. Compounds affecting other resistance mechanisms, which are important and which were discussed above, were not considered in this review.

Table 2.

Secondary metabolites from plants that can inhibit P-gp, MRP1, BCRP, bacterial, and fungal ABC transporters.

Natural product Occurrence Activities Reference
TERPENOIDS
Monoterpenes
Citronellal, citronellol Zanthoxylum piperitum (Rutaceae) 1 Yoshida et al. (2005)
Diterpenes
Andrographolide Andrographis paniculata (Acanthaceae) 2 (biphasic action) Najar et al. (2010)
Jatrophane diterpene polyesters Euphorbia serrulata, E. esula, E. salicifolia, E. peplus (Euphorbiaceae) 3 in mouse lymphoma cells Hohmann et al. (2002)
Latilagascene A, latilagascene B, latilagascene C (lathyrane diterpenes) Euphorbia lagascae (Euphorbiaceae) 4, 5 Duarte et al. (2006)
Totarol Podocarpus totara (Podocarpaceae) Inhibits Staphylococcus aureus NorA efflux pump Smith et al. (2007)
Triterpenes
Aegicerin Clavija procera (Theophrastaceae) Reverses MDR in resistant Mycobacterium tuberculosis strains Rojas et al. (2006)
Betulinic acid, pomolic acid Licania tomentosa, Chrysobalanus icaco, (Chrysobalanaceae) 3 in leukemia cells Fernandes et al. (2003)
Limonin, deacetylnomilin Citrus jambhiri, Citrus pyriformis, Phellodendron amurense (Rutaceae) 6 Min et al. (2007), El-Readi et al. (2010)
Dyscusin A, cumingianol A–F, cumingianoside R Dysoxylum cumingianum (Meliaceae) 3 in cancer cells; 7 Kurimoto et al. (2011a,b)
Euscaphic acid, tormentic acid, 2 α -acetyl tormentic acid, 3β-acetyl tormentic acid Cecropia lyratiloba (Moraceae) 3 in leukemia cell line Rocha Gda et al. (2007)
Glycyrrhizin Glycyrrhiza glabra (Fabaceae) 2 (biphasic action) Najar et al. (2010)
21α-Hydroxytaraxasterol and related triterpenes Euphorbia lagascae (Euphorbiaceae) 6, 7 Duarte et al. (2009)
Obacunone, 12-alpha-hydroxylimonin Phellodendron amurense (Rutaceae) 1 in MDR cancer cells Min et al. (2007)
Phytolacca saponins N-1–N-5 Phytolacca americana (Phytolaccaceae) 3 in 2780 AD cells Wang et al. (2008)
Sinocalycanchinensin E Sinocalycanthus chinensis (Calycanthaceae) Enhances colchicine-induced cytotoxicity in MDR KB cells Kashiwada et al. (2011)
β-Amyrin, uvaol, oleanolic acid Carpobrotus edulis (Aizoaceae) 3 in mouse lymphoma cell line and Gram-positive bacteria Martins et al. (2010), Ordway et al. (2003)
Steroids
Cardenolides Nerium oleander (Apocynaceae) 3 ovarian cancer 2780AD cells Zhao et al. (2007)
Cycloartanes (9,19-cyclopropyl-triterpenes) Euphorbia species (Euphorbiaceae) 8 Madureira et al. (2004)
Digoxin, digitoxin Digitalis spp. (Plantaginaceae) 2 de Lannoy and Silverman (1992), Cavet et al. (1996)
Ginsenoside Rc, ginsenosides Rd, parishin C Panax spp. (Araliaceae) 4 in lymphoma cells Berek et al. (2001)
Methylprototribestin Tribulus terrestris (Zygophyllaceae) 4 (doxorubicin) Ivanova et al. (2009)
Protopanaxatriol (ginsenoside) Panax ginseng (Araliaceae) 2, 4 in AML-2/D100 cells Choi et al. (2003)
Stigmasterol, β-sitosterol-O-glucoside Citrus jambhiri, Citrus pyriformis (Rutaceae) 1 in Caco2 and leukemia cells El-Readi et al. (2010)
Withaferin A Withania somnifera (Solanaceae) 4 in K562/Adr cells Suttana et al. (2010)
Tetraterpenes
Carotenoids (lycopene, violaxanthin, and related compounds) Capsicum annuum (Solanaceae);Daucus carota spp. sativus (Apiaceae) 1, 9 Molnar et al. (2004), Kars et al. (2008), Gyemant et al. (2006)
PHENOLICS
Phenyl propanoids
Chlorogenic acid Coffea arabica (Rubiaceae) and many plants 1 Najar et al. (2010)
Curcumin, tetrahydrocurcumin Curcuma longa (Zingiberaceae) 1, 5 Zhou et al. (2004), Limtrakul et al. (2007), Hou et al. (2008), Lu et al. (2012)
Flavonoids, catechins, chalcones, xanthones, stilbenes, anthocyanins, and related polyphenols
Acacetin Several families 1, 10 in human erythrocytes and breast cancer cells Wesolowska et al. (2009)
Afrormosin, robinin, amorphigenin Several Fabaceae 1, 10 Gyemant et al. (2005)
Ampelopsin Hovenia dulcis (Rhamnaceae) 1, 5 in K562/ADR cells Ye et al. (2009)
Apigenin, Several plants 1, 4, 9, 10 in MES-SA/DX5 cells; substrate for multidrug transporter in Plasmodium falciparum Zhang et al. (2004), Leslie et al. (2001), Perez-Victoria et al. (1999), Wesolowska et al. (2009), Angelini et al. (2010)
Baicalein Scutellaria baicalensis (Lamiaceae) Substrate for Yorlp and Pdr5p transporters in yeast Saccharomyces cerevisiae Kolaczkowski et al. (1998)
Biochanin A Several families 1, 9 Chung et al. (2005), Zhang et al. (2004)
Calodenin B, dihydrocalodenin B, and other dimeric proanthocyanidins Ochna macrocalyx (Ochnaceae) Inhibit MDR in Staphylococcus aureus (RN4220, XU212, and SA-1199-B) Tang et al. (2003)
Chrysin Several species 1, 2 (biphasic action), 9 Molnár et al. (2008), Gyemant et al. (2005), Zhou et al. (2004), Zhang et al. (2004), Critchfield et al. (1994), de Wet et al. (2001)
Chrysosplenol-D, chrysoplenetin Artemisia annua L. (Asteraceae) Synergistic inhibition of MDR in Staphylococcus aureus Stermitz et al. (2002)
Cyanidin, callistephin, pelargonin, ideanin, cyanin, pelargonidin, and related anthocyanidins Glycine max L. Merr. (Fabaceae), Aronia melanocarpa L. (Rosaceae) 1 Molnár et al. (2008)
Daidzein Several species of Fabaceae 1, 9, 10 Chung et al. (2005), Zhang et al. (2004), Cooray et al. (2004)
5,7-Dimethoxyflavone, kaempferide Kaempferia parviflora (Zingiberaceae) 9 (in vitro and in vivo) An et al. (2011)
Diosmin Citrus spp. (Rutaceae) 2 Yoo et al. (2007)
Ellagic acid, tannic acid Several species Inhibit an efflux pump in Acinetobacter baumannii and enhances antibiotic activity Chusri et al. (2009)
Epicatechin, epicatechin gallate, epigallocatechin, epigallocatechin gallate (EGCG) Camellia sinensis (Theaceae);Carpobrotus edulis (Aizoaceae) 1 in MCF-7/Adr and mouse lymphoma cell line; 9, 10; 3 in Gram-positive bacteria Martins et al. (2010), Zhang et al. (2004), Zhu et al. (2001), Gyemant et al. (2005), Mei et al. (2004), Wei et al. (2003)
Fisetin Several species 2, 9 in breast cancer cells; 4 in MES-SA/DX5 cells; substrate for Yorlp transporters in yeast Saccharomyces cerevisiae Chung et al. (2005), Kolaczkowski et al. (1998), Angelini et al. (2010)
Formononetin and other isoflavones Several species of Fabaceae 1, 2, 10 Molnár et al. (2008), Gyemant et al. (2005)
Galangin Several plant families 2 (biphasic action); 10 Zhou et al. (2004), Critchfield et al. (1994), de Wet et al. (2001)
Genistein and derivatives Several species of Fabaceae 1, 2, 9, 10 Zhang et al. (2004), Taur and Rodriguez-Proteau (2008), Leslie et al. (2001), Versantvoort et al. (1994, 1996)
Hesperidin, neohesperidin, nobiletin, Tangeretin Citrus jambhiri, Citrus pyriformis (Rutaceae) 1, 9 El-Readi et al. (2010), Zhang et al. (2004), Ofer et al. (2005)
Icariin Epimedium grandiflorum (Berberidaceae) 1, 5 Liu et al. (2009)
Isobavachalcone Dorstenia barteri (Moraceae) Inhibits efflux pump in Gram-negative bacteria Kuete et al. (2010)
Kaempferol, morin, taxifolin, spiraeoside, and related flavonoids Several plants 2 (biphasic action); 1 and OCT, 9, 10 Zhou et al. (2004), Zhang et al. (2004), de Wet et al. (2001), Gyemant et al. (2005)
Luteolin and its glycosides Several plants 1, 9, 10 Zhang et al. (2004), Nissler et al. (2004)
Mangiferin, norathyriol, and other xanthones Mangifera indica (Anacardiaceae) Modulate the function of MDR1/P-glycoprotein (P-gp ABCB1) multidrug transporter. (biphasic action) [8, 34, 35] Najar et al. (2010), Chieli et al. (2010)
Naringin, naringenin, and derivatives Euphorbia lagascae, Euphorbia tuckeyana (Euphorbiaceae); Citrus hybrids (Rutaceae) 1, 9, 10; substrate for MDR1 in Plasmodium falciparum Chung et al. (2005), Zhang et al. (2004), Ofer et al. (2006), Leslie et al. (2001), Perez-Victoria et al. (1999), de Castro et al. (2007, 2008), Wesolowska et al. (2007), Duarte et al. (2010)
Pentagalloylglucose (gallotannin) Several species 1 in MDR KB-C2 cells Kitagawa et al. (2007)
Phloretin, phloridzin Several species 1, 9 Molnár et al. (2008), Zhang and Morris (2003), Zhang et al. (2004), Gyemant et al. (2005)
Plagiochin E Marchantia polymorpha (Marchantiaceae) Reverses the efflux pump in Candida albicans Guo et al. (2008)
Quercetin, 3′,4′,7-trimethoxyquercetin, quercetagetin, hesperetin, isoquercitrin, myricetin, and derivatives Several species 1 and OCT in MDR cancer cells; 9, 10; substrate for Yorlp in yeast Saccharomyces cerevisiae substrate for MDR1 in Plasmodium falciparum. Scambia et al. (1994), Kolaczkowski et al. (1998), Shapiro and Ling (1997), Conseil et al. (1998), Cooray et al. (2004), Ofer et al. (2005), Ohtani et al. (2007), Leslie et al. (2001), Zhang et al. (2004)
Resveratrol Several plants 7, 9 Cooray et al. (2004)
Rotenone Derris spp., Tephrosia spp., Lonchocarpus spp. (Fabaceae) 1 Molnár et al. (2008), Gyemant et al. (2005)
Rutin Several species 1 and OCT; substrate of MDR in Plasmodium falciparum Ofer et al. (2005, 2006), Foster et al. (2001), Perez-Victoria et al. (1999)
Silymarin (isosilybin, silychristin, silydianin, silybin) Silybum marianum (Asteraceae) 1, 4, 5, 9 in cancer cells Zhou et al. (2004), Agarwal et al. (2006), Zhang and Morris (2003), Zhang et al. (2004), Trompier et al. (2003)
Tiliroside Platanus orientalis (Platanaceae), Herissantia tiubae (Malvaceae) 5; inhibits (NorA) efflux protein in Staphylococcus aureus Falcao-Silva et al. (2009)
Tricin Sasa borealis (Gramineae) 3 in adriamycin-resistant MCF-7/ADR cells Jeong et al. (2007)
3′,4′,6-Trihydroxy-2,4-dimethoxy-3-(3′′,4′′-dihydroxybenzyl) chalcone, and derivatives Onychium japonicum (Sinopteridaceae) 3 in MCF-7/ADR and Bel-7402/5-Fu cells Li et al. (2011a)
3,5,4′-Trimethoxy-trans-stilbene Dalea versicolor (Fabaceae) Enhances the antimicrobial effect of berberine against NorA S. aureus mutant strain Belofsky et al. (2004)
Quinones, anthraquinones, naphthoquinones
Aloe-emodin Rheum palmatum (Polygonaceae); Aloe spp. (Asphodelaceae) 2 Cui et al. (2008)
Diospyrone (a naphthoquinone) Diospyros canaliculata (Ebenaceae) Inhibits efflux pump in Gram-negative bacteria Kuete et al. (2010)
Emodin Rheum palmatum (Polygonaceae) 2; synergistic antimicrobial effect with ampicillin or oxacillin in MRSA Lee et al. (2010), Cui et al. (2008)
Rhein Rheum palmatum (Polygonaceae) 2, 4 Cui et al. (2008), van Gorkom et al. (2002)
Lignans
Syringaresinol Sasa borealis (Gramineae) 1 in adriamycin-resistant MCF-7/ADR cells Jeong et al. (2007)
Coumarins and furanocoumarins
Bergamottin, 6′,7′-dihydroxybergamottin, 6′,7′-epoxybergamottin Citrus hybrids (Rutaceae) 1 de Castro et al. (2007, 2008)
Alkaloids
Acronycine Bauerella australiana 2 Dorr et al. (1989)
Arborinine, evoxanthine Ruta graveolens (Rutaceae) 1, 5 in cancer cells Rethy et al. (2008)
Berbamine Berberis sp. (Berberidaceae) 2 in BBB and in Caco2 cells He and Liu (2002)
Berberine Hydrastis canadensis (Ranunculaceae) 1, 2, 2 in BBB; 8 (bacteria) 2 in vascular smooth muscle cells (VSMCs) Severina et al. (2001), He and Liu (2002), Efferth et al. (2005), Suzuki et al. (2010)
Camptothecin Camptotheca acuminata (Nyssaceae) Substrate for ABC2 transporter in Botrytis cinerea; for PMR5 in Penicillium digitatum, AtrBp in Aspergillus nidulans; 11 Mattern et al. (1993), Lee et al. (2005), Nakaune et al. (2002), Andrade et al. (2000)
Canthin-6-one, 8-hydroxy-canthin-6-one, 5(zeta)-hydroxy-octadeca-6(E)-8(Z)-dienoic acid Allium neapolitanum (Amaryllidaceae), (Simaroubaceae), (Rutaceae) Inhibits Mycobacterium, methicillin-resistant Staphylococcus aureus (MRSA); and a MDR strain of S. aureus O’Donnell and Gibbons (2007)
Capsaicin Capsicum frutescens (Solanaceae) 2, 4 Okura et al. (2010)
Catharanthine 2, 4 (vinblastine) in CEM/VLB1K cells Beck et al. (1988), Zamora et al. (1988)
Cepharanthine Stephania cepharantha (Menispermaceae) 4 (doxorubicin and vincristine) Ikeda et al. (2005), Katsui et al. (2004), Nakajima et al. (2004)
Chelerythrine Zanthoxylum clava-herculis (Rutaceae) Reversal of drug resistance in methicillin-resistant Staphylococcus aureus (MRSA) Gibbons et al. (2003)
Cinchonine, hydrocinchonine, quinidine Cinchona pubescens (Rubiaceae) 4 Solary et al. (2000), Genne et al. (1994), Lee et al. (2011)
Colcemid, colchicine Colchicum autumnale (Colchicaceae) 2 Elsinga et al. (2004)
Conoduramine Peschiera laeta (Apocynaceae) 2, 4 in KB cells You et al. (1994)
Coptisine Several species of Ranunculaceae; Berberidaceae 2 in vascular smooth muscle cells (VSMCs) Suzuki et al. (2010)
8-Oxocoptisine Coptis japonica (Ranunculaceae) 1 in MES-SA/DX5 and HCT15 cells Min et al. (2006b)
Coronaridine, heyneanine dippinine B and C Tabernanthe iboga (Apocynaceae) 4 in vincristine-resistant KB cells Kam et al. (2004)
Cycleanine Synclisia scabrida (Menispermaceae) 6 in MCF-7/Adr and KBv200 cells Tian and Pan (1997)
Cyclopamine Veratrum spp. (Melanthiaceae) 1, 3 Lavie et al. (2001)
Dauriporphine Sinomenium acutum (Menispermaceae) 1 in MES-SA/DX5 and HCT15 cells Min et al. (2006a)
Emetine Psychotria ipecacuanha (Rubiaceae) 2, 11 Möller et al. (2006)
Ergotamine Claviceps purpurea (Clavicipitaceae) 1 in MDR cells Yasuda et al. (2002)
Fangchinoline Stephania tetrandra (Menispermaceae) Reduces resistance to paclitaxel and actinomycin D in HCT15 cells Choi et al. (1998), Wang et al. (2005)
Galanthamine Galanthus nivalis (Amaryllidaceae) 1 at the BBB Namanja et al. (2009)
Gamma-fagarine Phellodendron amurense (Rutaceae) 1 MDR cancer cells Min et al. (2007)
Glaucine Glaucium flavum (Papaveraceae) 1, 2 Ma and Wink (2009)
Harmine Peganum harmala (Zygophyllaceae) 9 Ma and Wink (2010)
Homoharringtonine, cephalotaxine Cephalotaxus harringtonia (Cephalotaxaceae) 2, 11 Zhou et al. (1995), Efferth et al. (2003)
Hydrastine Hydrastis canadensis (Ranunculaceae) 2 Etheridge et al. (2007)
Ibogaine Tabernanthe iboga (Apocynaceae) 5, 9 Tournier et al. (2010)
Indole-3-carbinol Many species of Brassicaceae Downregulation of upregulated P-gp; dietary adjuvant in MDR cancer treatment Arora and Shukla (2003)
Insularine, insulanoline Antizoma miersiana (Menispermaceae) 9 in MCF-7/Adr and KBv200 cells Tian and Pan (1997)
Kopsamine, pleiocarpine, lahadinine A, kopsiflorine Kopsia dasyrachis (Apocynaceae) 4 Kam et al. (1998)
Lobeline Lobelia inflata (Campanulaceae) 4 in tumor cells Ma and Wink (2008)
5-Methoxyhydnocarpine, pheophorbide A Hydnocarpus kurzii (Flacourtiaceae), Berberis spp. (Berberidaceae) Inhibitor of NorA MDR pump in Staphylococcus aureus Stermitz et al. (2000a,b, 2001), Guz et al. (2001)
N-trans-feruloyl 4′-O-methyldopamine Mirabilis jalapa (Nyctaginaceae) Inhibits growth of Staphylococcus aureus overexpressing the multidrug efflux transporter NorA Michalet et al. (2007)
Oxyberberine, canthin-6-one, 4-methoxy-N-methyl-2-quinolone, oxypalmatine Phellodendron amurense (Rutaceae) 1 in MDR cancer cells Min et al. (2007)
Paclitaxel Taxus spp. (Taxaceae) 2 Distefano et al. (1997)
Palmatine Several species of Ranunculaceae; Berberidaceae 2 in vascular smooth muscle cells (VSMCs); 8 (bacteria) Severina et al. (2001), Suzuki et al. (2010)
Piperine Piper nigrum (Piperaceae) 1, 2, 3, 9 in cancer cells; inhibition of overexpressed mycobacterial putative efflux protein (Rv1258c) Han et al. (2008), Bhardwaj et al. (2002), Li et al. (2011b), Sharma et al. (2010)
Quinine Cinchona pubescens (Rubiaceae) 2; 4 Genne et al. (1994), Zamora et al. (1988)
Rescinnamine Rauvolfia serpentina (Apocynaceae) 3 of vinblastine; induces MDR1 and p-gp expression Bhat et al. (1995)
Reserpine Rauvolfia serpentina (Apocynaceae) 8 in bacteria; 3 in methicillin-resistant Staphylococcus aureus (MRSA) strains (NorA MDR pump); 2; 3 of vinblastine in CEM/VLB1K cells Beck et al. (1988), Gibbons and Udo (2000), Markham et al. (1999)
Roemerine Annona senegalensis (Annonaceae) 2; 4 You et al. (1995)
Rutaecarpine Evodia rutaecarpa (Rutaceae) 6 in p-gp overexpressing CEM/ADR5000 cells Lee et al. (1995), Adams et al. (2007)
Sanguinarine Sanguinaria canadensis (Papaveraceae) 4 Ding et al. (2002), Weerasinghe et al. (2006)
Stemocurtisine, oxystemokerrine Stemona aphylla and S. burkillii (Stemonaceae) P-gp modulator, enhance the cytotoxicity of vinblastine, paclitaxel, and doxorubicin in KB-V1 cells Chanmahasathien et al. (2011)
Tetrandrine Stephania tetrandra (Menispermaceae) 1; reduces resistance to paclitaxel and actinomycin D in HCT15 cells; 4 in MDR mice; 6 (in vitro and in vivo); 4in cancer patients treated with doxorubicin, etoposide, and cytarabine Choi et al. (1998), Xu et al. (2006), Zhu et al. (2005), Fu et al. (2002, 2004)
Thaliblastine Thalictrum spp. (Ranunculaceae) Reverses MDR by decreasing the overexpression of P-gp in MCF-7/Adr cells Chen and Waxman (1995), Chen et al. (1993, 1996)
Tomatidine Solanum lycopersicum (Solanaceae) 1,2 Lavie et al. (2001)
Trisphaeridine, pretazettine, 2-O-acetyllycorine, risperidone Several species of Amaryllidaceae 1 and 3 in L5178 MDR mouse lymphoma cells Zupko et al. (2009)
Vasicine acetate, 2-acetyl benzylamine Adhatoda vasica. (Acanthaceae) Inhibit Mycobacteriumtuberculosis and a MDR strain Ignacimuthu and Shanmugam (2010)
Veralosinine, veranigrine Veratrum lobelianum, Veratrum nigrum (Melanthiaceae) 1 and 3 against doxorubicin Ivanova et al. (2011)
Vincristine, Vinblastine Catharanthus roseus (Apocynaceae) 2; 2 in BBB; 11 He and Liu (2002), Hu et al. (1995)
Vindoline 2; reversal of vinblastine resistance in a MDR human leukemic cell line and CEM/VLB1K cells Beck et al. (1988)
Voacamine Peschiera laeta, Peschiera fuchsiaefolia (Apocynaceae) 1, 2; 2 in BBB; reversal of vinblastine; and doxorubicin resistance in MDR cancer cells by binding to P-glycoprotein You et al. (1994), Meschini et al. (2003, 2005)
Yohimbine Rauwolfia serpentina (Apocynaceae) Reversal of vinblastine resistance in a MDR human leukemic cell line and CEM/VLB 100 cells Zamora et al. (1988), Bhat et al. (1995)

Activities: 1: inhibits p-gp; 2: p-gp substrate; 3: reversal of MDR; 4: reversal of p-gp mediated MDR; 5: inhibition of MDR1 gene. 6: p-gp modulation in cancer cells; 7: induction of apoptosis; 8: substrate for ABC transporter; 9: blocks BCRP and increases in mitoxantrone accumulation; 10: MRP1 inhibitor; 11: induction of MDR overexpression.

Lipophilic SM, such as monoterpenes, diterpenes, triterpenes (including saponins), steroids (including cardiac glycosides), and tetraterpenes (carotenoids; Table 2) function as substrates for P-gp in cancer cells. The ABC transporter from fungi, AtrB (Andrade et al., 2000), or the NorA efflux pump in Staphylococcus aureus can also be affected (Smith et al., 2007). Because of their lipophilicity, these terpenoids most likely are substrates for P-gp and other ABC transporter. If administered as a chemosensitizer in combination with a cytotoxic agent they function as inhibitors competing for binding to the active side of the transporters.

Among the structurally heterogenous group of alkaloids, a large number of the more lipophilic substances from the classes of isoquinoline, protoberberine, quinoline, indole, monoterpene indole, and steroidal alkaloids (Table 2) can serve as substrates whereas the more polar alkaloids with a tropane, quinolizidine, piperidine, and pyrrolizidine skeleton do not bind to ABC transporters (Wink, 2007). Similar to the situation of terpenoids, the active alkaloids probably function as competitive inhibitors of P-gp and BCRP in cancer cells, and NorA in bacteria and fungi (Table 2).

It is remarkable on the first sight that also quite a large number of more polar phenolic SM (phenolic acids, flavonoids, catechins, chalcones, xanthones, stilbenes, anthocyanins, tannins, anthraquinones, and naphthoquinones) inhibit P-gp, MRP1, BCRP, and OATP in cancer cells with MDR. Some of them can reverse MDR when given in combination with cytotoxic agents (Table 2). Bacteria and fungi appear to be sensitive as well (Guz et al., 2001; Falcao-Silva et al., 2009). Some of these phenolics are lipophilic enough to be competitive inhibitors of ABC transporters.

Polyphenols are exciting tethering compounds of proteins. They can effectively interact directly with proteins by forming hydrogen and ionic bonds with amino acid side chains. They can thus interfere with the 3D structure of proteins (conformation) and inhibit their activities (details in Wink, 2008b; Wink and Schimmer, 2010). We speculate therefore, that the inhibition seen in polyphenols is caused by a direct binding and complex formation (not necessarily the active side) of ABC transporters. Since many polyphenols have no or very low toxicity (e.g., many of them are ingredients of our food, such as flavonoids or tannins), they might be excellent candidates as reversal agents, both in chemotherapy and in agriculture.

We have focused on ABC transporters in this review. But as mentioned above, resistance can be due to other mechanisms as well and is often multifactorial. Faria et al. (2011) and Kim et al. (2007, 2010) have successfully employed thymol (a phenolic monoterpene), salicyl aldehyde, and the alkaloid berberine to enhance the activity of fungicides in Candida, Aspergillus, Penicillium, and Cryptococcus. These experimental data can be regarded as a proof of concept that plant secondary products can be interesting candidates for chemosensitization (even if they not interfere with ABC transporters) of pathogenic fungi in agriculture and food technology to improve the fungicidal activity of certain fungicides.

Conclusion

This review summarizes the evidence that selected SM of plants can be interesting candidates to inhibit ABC transporters in MDR cancer cells or to chemosensitize pathogenic fungi and other microbes for treatment with antimicrobial agents. Whereas lipophilic terpenoids and alkaloids appear to be substrates of P-gp, MRP1, or BCRP and thus competitive inhibitors, the more polar phenolic compounds (flavonoids, tannins, quinones) can bind to the transporter proteins and inhibit their activity by disturbing protein conformation. A combination of a cytotoxic agent, antibiotic, or fungicide with a natural chemosensitizer (not necessarily an inhibitor of ABC transporters) might provide an interesting strategy to overcome MDR in cancer patients and to improve antibiotic or antifungal efficacy in medicine, agriculture, or food industry.

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Abbreviations

ABC, ATP-binding cassette; BCRP, breast cancer resistance protein; MDR, multidrug resistance; MRP1, multidrug resistance-associate protein; P-gp, P-glycoprotein.

References

  1. Adams M., Mahringer A., Kunert O., Fricker G., Efferth T., Bauer R. (2007). Cytotoxicity and p-glycoprotein modulating effects of quinolones and indoloquinazolines from the Chinese herb Evodia rutaecarpa. Planta Med. 73, 1554–1557 10.1055/s-2007-990261 [DOI] [PubMed] [Google Scholar]
  2. Agarwal R., Agarwal C., Ichikawa H., Singh R. P., Aggarwal B. B. (2006). Anticancer potential of silymarin, from bench to bed side. Anticancer Res. 26, 4457–4498 [PubMed] [Google Scholar]
  3. Ambudkar S. V., Dey S., Hrycyna C. A., Ramachandra M., Pastan I., Gottesman M. M. (1999). Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu. Rev. Pharmacol. Toxicol. 39, 361–398 10.1146/annurev.pharmtox.39.1.361 [DOI] [PubMed] [Google Scholar]
  4. An G., Wu F., Morris M. E. (2011). 5,7-Dimethoxyflavone and multiple flavonoids in combination alter the ABCG2-mediated tissue distribution of mitoxantrone in mice. Pharm. Res. 28, 1090–1099 10.1007/s11095-011-0368-y [DOI] [PubMed] [Google Scholar]
  5. Andrade A. C., Del Sorbo G., Van Nistelrooy J. G., Waard M. A. (2000). The ABC transporter AtrB from Aspergillus nidulans mediates resistance to all major classes of fungicides and some natural toxic compounds. Microbiology 146, 1987–1997 [DOI] [PubMed] [Google Scholar]
  6. Angelini A., Di Ilio C., Castellani M. L., Conti P., Cuccurullo F. (2010). Modulation of multidrug resistance p-glycoprotein activity by flavonoids and honokiol in human doxorubicin- resistant sarcoma cells (MES-SA/DX-5), implications for natural sedatives as chemosensitizing agents in cancer therapy. J. Biol. Regul. Homeost. Agents 24, 197–205 [PubMed] [Google Scholar]
  7. Annereau J. P., Szakács G., Tucker C. J., Arciello A., Cardarelli C., Collins J., Grissom S., Zeeberg B. R., Reinhold W., Weinstein J. N., Pommier Y., Paules R. S., Gottesman M. M. (2004). Analysis of ATP-binding cassette transporter expression in drug-selected cell lines by a microarray dedicated to multidrug resistance. Mol. Pharmacol. 66, 1397–1405 10.1124/mol.104.005009 [DOI] [PubMed] [Google Scholar]
  8. Arora A., Shukla Y. (2003). Modulation of vinca-alkaloid induced P-glycoprotein expression by indole-3-carbinol. Cancer Lett. 189, 167–173 10.1016/S0304-3835(02)00550-5 [DOI] [PubMed] [Google Scholar]
  9. Beck W. T., Cirtain M. C., Glover C. J., Felsted R. L., Safa A. R. (1988). Effects of indole alkaloids on multidrug resistance and labeling of P-glycoprotein by a photoaffinity analog of vinblastine. Biochem. Biophys. Res. Commun. 153, 959–966 10.1016/S0006-291X(88)81321-4 [DOI] [PubMed] [Google Scholar]
  10. Belofsky G., Percivill D., Lewis K., Tegos G. P., Ekart J. (2004). Phenolic metabolites of Dalea versicolor that enhance antibiotic activity against model pathogenic bacteria. J. Nat. Prod. 67, 481–484 10.1021/np030409c [DOI] [PubMed] [Google Scholar]
  11. Berek L., Szabo D., Petri I. B., Shoyama Y., Lin Y. H., Molnar J. (2001). Effects of naturally occurring glucosides, solasodine glucosides, ginsenosides and parishin derivatives on multidrug resistance of lymphoma cells and leukocyte functions. In vivo 15, 151–156 [PubMed] [Google Scholar]
  12. Bhardwaj R. K., Glaeser H., Becquemont L., Klotz U., Gupta S. K., Fromm M. F. (2002). Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3A4. J. Pharmacol. Exp. Ther. 302, 645–650 10.1124/jpet.102.034728 [DOI] [PubMed] [Google Scholar]
  13. Bhat U. G., Winter M. A., Pearce H. L., Beck W. T. (1995). A structure-function relationship among reserpine and yohimbine analogues in their ability to increase expression of mdr1 and P-glycoprotein in a human colon carcinoma cell line. Mol. Pharmacol. 48, 682–689 [PubMed] [Google Scholar]
  14. Brooks T. A., Minderman H., O’Loughlin K. L., Pera P., Ojima I., Baer M. R., Bernacki R. J. (2003). Taxane-based reversal agents modulate drug resistance mediated by P-glycoprotein, multidrug resistance protein, and breast cancer resistance protein. Mol. Cancer Ther. 2, 1195–1205 [PubMed] [Google Scholar]
  15. Cavet M. E., West M., Simmons N. L. (1996). Transport and epithelial secretion of the cardiac glycoside, digoxin, by human intestinal epithelial (Caco-2) cells. Br. J. Pharmacol. 118, 1389–1396 [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Chanmahasathien W., Ampasavate C., Greger H., Limtrakul P. (2011). Stemona alkaloids, from traditional Thai medicine, increase chemosensitivity via P-glycoprotein-mediated multidrug resistance. Phytomedicine 18, 199–204 10.1016/j.phymed.2010.07.014 [DOI] [PubMed] [Google Scholar]
  17. Chauffert B., Pelletier H., Corda C., Solary E., Bedenne L., Caillot D., Martin F. (1990). Potential usefulness of quinine to circumvent the anthracycline resistance in clinical practice. Br. J. Cancer 62, 395–397 10.1038/bjc.1990.305 [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Chen G., Ramachandran C., Krishan A. (1993). Thaliblastine, a plant alkaloid, circumvents multidrug resistance by direct binding to P-glycoprotein. Cancer Res. 53, 2544–2547 [PubMed] [Google Scholar]
  19. Chen G., Teicher B. A., Frei E. (1996). Differential interactions of Pgp inhibitor thaliblastine with adriamycin, etoposide, taxol and anthrapyrazole CI941 in sensitive and multidrug-resistant human MCF-7 breast cancer cells. Anticancer Res. 16, 3499–3505 [PubMed] [Google Scholar]
  20. Chen G., Waxman D. J. (1995). Complete reversal by thaliblastine of 490-fold adriamycin resistance in multidrug-resistant (MDR) human breast cancer cells. Evidence that multiple biochemical changes in MDR cells need not correspond to multiple functional determinants for drug resistance. J. Pharmacol. Exp. Ther. 274, 1271–1277 [PubMed] [Google Scholar]
  21. Chieli E., Romiti N., Rodeiro I., Garrido G. (2010). In vitro modulation of ABCB1/P-glycoprotein expression by polyphenols from Mangifera indica. Chem. Biol. Interact. 186, 287–294 10.1016/j.cbi.2010.05.012 [DOI] [PubMed] [Google Scholar]
  22. Choi C. H., Kang G., Min Y. D. (2003). Reversal of P-glycoprotein-mediated multidrug resistance by protopanaxatriol ginsenosides from Korean red ginseng. Planta Med. 69, 235–240 10.1590/S0034-72992003000200014 [DOI] [PubMed] [Google Scholar]
  23. Choi S. U., Park S. H., Kim K. H., Choi E. J., Kim S., Park W. K., Zhang Y. H., Kim H. S., Jung N. P., Lee C. O. (1998). The bisbenzylisoquinoline alkaloids, tetrandine and fangchinoline, enhance the cytotoxicity of multidrug resistance-related drugs via modulation of P-glycoprotein. Anticancer Drugs 9, 255–261 10.1097/00001813-199803000-00008 [DOI] [PubMed] [Google Scholar]
  24. Chung S. Y., Sung M. K., Kim N. H., Jang J. O., Go E. J., Lee H. J. (2005). Inhibition of P-glycoprotein by natural products in human breast cancer cells. Arch. Pharm. Res. 28, 823–828 10.1007/BF02972972 [DOI] [PubMed] [Google Scholar]
  25. Chusri S., Villanueva I., Voravuthikunchai S. P., Davies J. (2009). Enhancing antibiotic activity, a strategy to control Acinetobacter infections. J. Antimicrob. Chemother. 64, 1203–1211 10.1093/jac/dkp381 [DOI] [PubMed] [Google Scholar]
  26. Conseil G., Baubichon-Cortay H., Dayan G., Jault J. M., Barron D., Di Pietro A. (1998). Flavonoids, a class of modulators with bifunctional interactions at vicinal ATP- and steroid-binding sites on mouse P-glycoprotein. Proc. Natl. Acad. Sci. U.S.A. 95, 9831–9836 10.1073/pnas.95.17.9831 [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Cooray H. C., Janvilisri T., van Veen H. W., Hladky S. B., Barrand M. A. (2004). Interaction of the breast cancer resistance protein with plant polyphenols. Biochem. Biophys. Res. Commun. 317, 269–275 10.1016/j.bbrc.2004.03.040 [DOI] [PubMed] [Google Scholar]
  28. Critchfield J. W., Welsh C. J., Phang J. M., Yeh G. C. (1994). Modulation of adriamycin accumulation and efflux by flavonoids in HCT-15 colon cells. Activation of P-glycoprotein as a putative mechanism. Biochem. Pharmacol. 48, 1437–1445 10.1016/0006-2952(94)90568-1 [DOI] [PubMed] [Google Scholar]
  29. Cui X. R., Tsukada M., Suzuki N., Shimamura T., Gao L., Koyanagi J., Komada F., Saito S. (2008). Comparison of the cytotoxic activities of naturally occurring hydroxyanthraquinones and hydroxynaphthoquinones. Eur. J. Med. Chem. 43, 1206–1215 10.1016/j.ejmech.2007.08.009 [DOI] [PubMed] [Google Scholar]
  30. Dantzig A. H., Law K. L., Cao J., Starling J. J. (2001). Reversal of multidrug resistance by the P-glycoprotein modulator, LY335979, from the bench to the clinic. Curr. Med. Chem. 8, 39–50 [DOI] [PubMed] [Google Scholar]
  31. Dantzig A. H., Shepard R. L., Cao J., Law K. L., Ehlhardt W. J., Baughman T. M., Bumol T., Starling J. J. (1996). Reversal of P-glycoprotein-mediated multidrug resistance by a potent cyclopropyldibenzosuberane modulator, LY335979. Cancer Res. 56, 4171–4179 [PubMed] [Google Scholar]
  32. de Castro W. V., Mertens-Talcott S., Derendorf H., Butterweck V. (2007). Grapefruit juice-drug interactions, grapefruit juice and its components inhibit P-glycoprotein (ABCB1) mediated transport of talinolol in Caco-2 cells. J. Pharm. Sci. 96, 2808–2817 10.1002/jps.20975 [DOI] [PubMed] [Google Scholar]
  33. de Castro W. V., Mertens-Talcott S., Derendorf H., Butterweck V. (2008). Effect of grapefruit juice, naringin, naringenin, and bergamottin on the intestinal carrier-mediated transport of talinolol in rats. J. Agric. Food Chem. 56, 4840–4845 10.1021/jf0728451 [DOI] [PubMed] [Google Scholar]
  34. de Lannoy I. A., Silverman M. (1992). The MDR1 gene product, P-glycoprotein, mediates the transport of the cardiac glycoside, digoxin. Biochem. Biophys. Res. Commun. 189, 551–557 10.1016/0006-291X(92)91593-F [DOI] [PubMed] [Google Scholar]
  35. de Wet H., McIntosh D. B., Conseil G., Baubichon-Cortay H., Krell T., Jault J. M., Daskiewicz J. B., Barron D., Di Pietro A. (2001). Sequence requirements of the ATP-binding site within the C-terminal nucleotide-binding domain of mouse P-glycoprotein, structure-activity relationships for flavonoid binding. Biochemistry 40, 10382–10391 10.1021/bi010657c [DOI] [PubMed] [Google Scholar]
  36. Ding Z., Tang S. C., Weerasinghe P., Yang X., Pater A., Liepins A. (2002). The alkaloid sanguinarine is effective against multidrug resistance in human cervical cells via bimodal cell death. Biochem. Pharmacol. 63, 1415–1421 10.1016/S0006-2952(02)00902-4 [DOI] [PubMed] [Google Scholar]
  37. Distefano M., Scambia G., Ferlini C., Gaggini C., De Vincenzo R., Riva A., Bombardelli E., Ojima I., Fattorossi A., Panici P. B., Mancuso S. (1997). Anti-proliferative activity of a new class of taxanes (14beta-hydroxy-10-deacetylbaccatin III derivatives) on multidrug-resistance-positive human cancer cells. Int. J. Cancer 72, 844–850 [DOI] [PubMed] [Google Scholar]
  38. Dorr R. T., Liddil J. D., Von Hoff D. D., Soble M., Osborne C. K. (1989). Antitumor activity and murine pharmacokinetics of parenteral acronycine. Cancer Res. 49, 340–344 [PubMed] [Google Scholar]
  39. Duarte N., Gyemant N., Abreu P. M., Molnar J., Ferreira M. J. (2006). New macrocyclic lathyrane diterpenes, from Euphorbia lagascae, as inhibitors of multidrug resistance of tumour cells. Planta Med. 72, 162–168 10.1055/s-2005-873196 [DOI] [PubMed] [Google Scholar]
  40. Duarte N., Lage H., Abrantes M., Ferreira M. J. (2010). Phenolic compounds as selective antineoplasic agents against multidrug-resistant human cancer cells. Planta Med. 76, 975–980 10.1055/s-0029-1240892 [DOI] [PubMed] [Google Scholar]
  41. Duarte N., Ramalhete C., Varga A., Molnar J., Ferreira M. J. (2009). Multidrug resistance modulation and apoptosis induction of cancer cells by terpenic compounds isolated from Euphorbia species. Anticancer Res. 29, 4467–4472 [PubMed] [Google Scholar]
  42. Efferth T., Chen Z., Kaina B., Ag W. (2005). Molecular determinants of response of tumor cells to berberine. Cancer Genomics Proteomics 2, 115–123 [Google Scholar]
  43. Efferth T., Sauerbrey A., Halatsch M. E., Ross D. D., Gebhart E. (2003). Molecular modes of action of cephalotaxine and homoharringtonine from the coniferous tree Cephalotaxus hainanensis in human tumor cell lines. Naunyn Schmiedebergs Arch. Pharmacol. 367, 56–67 10.1007/s00210-002-0632-0 [DOI] [PubMed] [Google Scholar]
  44. El-Readi M. Z., Hamdan D., Farrag N., El-Shazly A., Wink M. (2010). Inhibition of P-glycoprotein activity by limonin and other secondary metabolites from Citrus species in human colon and leukaemia cell lines. Eur. J. Pharmacol. 626, 139–145 10.1016/j.ejphar.2009.09.040 [DOI] [PubMed] [Google Scholar]
  45. Elsinga P. H., Hendrikse N. H., Bart J., Vaalburg W., van Waarde A. (2004). PET studies on P-glycoprotein function in the blood-brain barrier, how it affects uptake and binding of drugs within the CNS. Curr. Pharm. Des. 10, 1493–1503 10.2174/1381612043384736 [DOI] [PubMed] [Google Scholar]
  46. Etheridge A. S., Black S. R., Patel P. R., So J., Mathews J. M. (2007). An in vitro evaluation of cytochrome P450 inhibition and P-glycoprotein interaction with goldenseal, Ginkgo biloba, grape seed, milk thistle, and ginseng extracts and their constituents. Planta Med. 73, 731–741 10.1055/s-2007-981550 [DOI] [PubMed] [Google Scholar]
  47. Falcao-Silva V. S., Silva D. A., Souza Mde F., Siqueira-Junior J. P. (2009). Modulation of drug resistance in Staphylococcus aureus by a kaempferol glycoside from Herissantia tiubae (Malvaceae). Phytother. Res. 23, 1367–1370 10.1002/ptr.2695 [DOI] [PubMed] [Google Scholar]
  48. Faria N. C. G., Kim J. H., Goncalves L., Martins M., Chan K. L., Campbell B. (2011). Enhanced activity of antifungal drugs using natural phenolics against yeast strains of Candida and Cryptococcus. Lett. Appl. Micobiol. 5, 506–513 10.1111/j.1472-765X.2011.03032.x [DOI] [PubMed] [Google Scholar]
  49. Fernandes J., Castilho R. O., da Costa M. R., Wagner-Souza K., Coelho Kaplan M. A., Gattass C. R. (2003). Pentacyclic triterpenes from Chrysobalanaceae species, cytotoxicity on multidrug resistant and sensitive leukemia cell lines. Cancer Lett. 190, 165–169 10.1016/S0304-3835(02)00593-1 [DOI] [PubMed] [Google Scholar]
  50. Foster B. C., Foster M. S., Vandenhoek S., Krantis A., Budzinski J. W., Arnason J. T., Gallicano K. D., Choudri S. (2001). An in vitro evaluation of human cytochrome P450 3A4 and P-glycoprotein inhibition by garlic. J. Pharm. Pharm. Sci. 4, 176–184 [PubMed] [Google Scholar]
  51. Fu L., Liang Y., Deng L., Ding Y., Chen L., Ye Y., Yang X., Pan Q. (2004). Characterization of tetrandrine, a potent inhibitor of P-glycoprotein-mediated multidrug resistance. Cancer Chemother. Pharmacol. 53, 349–356 10.1007/s00280-003-0742-5 [DOI] [PubMed] [Google Scholar]
  52. Fu L. W., Zhang Y. M., Liang Y. J., Yang X. P., Pan Q. C. (2002) , The multidrug resistance of tumour cells was reversed by tetrandrine in vitro and in xenografts derived from human breast adenocarcinoma MCF-7/adr cells. Eur. J. Cancer 38, 418–426 10.1016/S0959-8049(01)00356-2 [DOI] [PubMed] [Google Scholar]
  53. Genne P., Dimanche-Boitrel M. T., Mauvernay R. Y., Gutierrez G., Duchamp O., Petit J. M., Martin F., Chauffert B. (1992). Cinchonine, a potent efflux inhibitor to circumvent anthracycline resistance in vivo. Cancer Res. 52, 2797–2801 [PubMed] [Google Scholar]
  54. Genne P., Duchamp O., Solary E., Pinard D., Belon J. P., Dimanche-Boitrel M. T., Chauffert B. (1994). Comparative effects of quinine and cinchonine in reversing multidrug resistance on human leukemic cell line K562/ADM. Leukemia 8, 160–164 [PubMed] [Google Scholar]
  55. Gibbons S., Leimkugel J., Oluwatuyi M., Heinrich M. (2003). Activity of Zanthoxylum clava-herculis extracts against multi-drug resistant methicillin-resistant Staphylococcus aureus (mdr-MRSA). Phytother. Res. 17, 274–275 10.1002/ptr.1112 [DOI] [PubMed] [Google Scholar]
  56. Gibbons S., Udo E. E. (2000). The effect of reserpine, a modulator of multidrug efflux pumps, on the in vitro activity of tetracycline against clinical isolates of methicillin resistant Staphylococcus aureus (MRSA) possessing the tet(K) determinant. Phytother. Res. 14, 139–140 [DOI] [PubMed] [Google Scholar]
  57. Gillet J. P., Efferth T., Steinbach D., Hamels J., de Longueville F., Bertholet V., Remacle J. (2004). Microarray-based detection of multidrug resistance in human tumor cells by expression profiling of ATP-binding cassette transporter genes. Cancer Res. 64, 8987–8993 10.1158/0008-5472.CAN-04-1978 [DOI] [PubMed] [Google Scholar]
  58. Gottesman M. M. (2002). Mechanisms of cancer drug resistance. Annu. Rev. Med. 53, 615–627 10.1146/annurev.med.53.082901.103929 [DOI] [PubMed] [Google Scholar]
  59. Guengerich F. P. (2001). Uncommon P450-catalyzed reactions. Curr. Drug Metab. 2, 93–115 10.2174/1389200013338694 [DOI] [PubMed] [Google Scholar]
  60. Guo X. L., Leng P., Yang Y., Yu L. G., Lou H. X. (2008). Plagiochin E, a botanic-derived phenolic compound, reverses fungal resistance to fluconazole relating to the efflux pump. J. Appl. Microbiol. 104, 831–838 10.1111/j.1365-2672.2007.03617.x [DOI] [PubMed] [Google Scholar]
  61. Guz N. R., Stermitz F. R., Johnson J. B., Beeson T. D., Willen S., Hsiang J., Lewis K. (2001). Flavonolignan and flavone inhibitors of a Staphylococcus aureus multidrug resistance pump, structure-activity relationships. J. Med. Chem. 44, 261–268 10.1021/jm0004190 [DOI] [PubMed] [Google Scholar]
  62. Gyemant N., Tanaka M., Antus S., Hohmann J., Csuka O., Mandoky L., Molnar J. (2005). In vitro search for synergy between flavonoids and epirubicin on multidrug-resistant cancer cells. In vivo 19, 367–374 [PubMed] [Google Scholar]
  63. Gyemant N., Tanaka M., Molnar P., Deli J., Mandoky L., Molnar J. (2006) , Reversal of multidrug resistance of cancer cells in vitro, modification of drug resistance by selected carotenoids. Anticancer Res. 26, 367–374 [PubMed] [Google Scholar]
  64. Han Y., Chin Tan T. M., Lim L. Y. (2008). In vitro and in vivo evaluation of the effects of piperine on P-gp function and expression. Toxicol. Appl. Pharmacol. 230, 283–289 10.1016/j.taap.2008.02.026 [DOI] [PubMed] [Google Scholar]
  65. He L., Liu G. Q. (2002). Effects of various principles from Chinese herbal medicine on rhodamine123 accumulation in brain capillary endothelial cells. Acta Pharmacol. Sin. 23, 591–596 [PubMed] [Google Scholar]
  66. Hebestreit P., Melzig M. (2003). Cytotoxic activity of the seeds from Agrostemma githago var. githago. Planta Med. 69, 921–925 10.1055/s-2003-45101 [DOI] [PubMed] [Google Scholar]
  67. Hohmann J., Molnar J., Redei D., Evanics F., Forgo P., Kalman A., Argay G., Szabo P. (2002). Discovery and biological evaluation of a new family of potent modulators of multidrug resistance, reversal of multidrug resistance of mouse lymphoma cells by new natural jatrophane diterpenoids isolated from Euphorbia species. J. Med. Chem. 45, 2425–2431 10.1021/jm0111301 [DOI] [PubMed] [Google Scholar]
  68. Hou X. L., Takahashi K., Tanaka K., Tougou K., Qiu F., Komatsu K., Azuma J. (2008). Curcuma drugs and curcumin regulate the expression and function of P-gp in Caco-2 cells in completely opposite ways. Int. J. Pharm. 358, 224–229 10.1016/j.ijpharm.2008.03.010 [DOI] [PubMed] [Google Scholar]
  69. Hu X. F., Slater A., Wall D. M., Kantharidis P., Parkin J. D., Cowman A., Zalcberg J. R. (1995). Rapid up-regulation of mdr1 expression by anthracyclines in a classical multidrug-resistant cell line. Br. J. Cancer 71, 931–936 10.1038/bjc.1995.180 [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Hyafil F., Vergely C., Du Vignaud P., Grand-Perret T. (1993). In vitro and in vivo reversal of multidrug resistance by GF120918, an acridonecarboxamide derivative. Cancer Res. 53, 4595–4602 [PubMed] [Google Scholar]
  71. Ignacimuthu S., Shanmugam N. (2010). Antimycobacterial activity of two natural alkaloids, vasicine acetate and 2-acetyl benzylamine, isolated from Indian shrub Adhatoda vasica Nees. leaves. J. Biosci. 35, 565–570 10.1007/s12038-010-0065-8 [DOI] [PubMed] [Google Scholar]
  72. Ikeda R., Che X. F., Yamaguchi T., Ushiyama M., Zheng C. L., Okumura H., Takeda Y., Shibayama Y., Nakamura K., Jeung H. C. (2005). Cepharanthine potently enhances the sensitivity of anticancer agents in K562 cells. Cancer Sci. 96, 372–376 10.1111/j.1349-7006.2005.00057.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Ingelman-Sundberg M., Gomez A. (2010). The past, present and future of pharmacoepigenomics. Pharmacogenomics 11, 625–662 10.2217/pgs.10.59 [DOI] [PubMed] [Google Scholar]
  74. Ivanova A., Serly J., Christov V., Stamboliyska B., Molnar J. (2011). Alkaloids derived from genus Veratrum and Peganum of Mongolian origin as multidrug resistance inhibitors of cancer cells. Fitoterapia 82, 570–575 10.1016/j.fitote.2010.10.012 [DOI] [PubMed] [Google Scholar]
  75. Ivanova A., Serly J., Dinchev D., Ocsovszki I., Kostova I., Molnar J. (2009). Screening of some saponins and phenolic components of Tribulus terrestris and Smilax excelsa as MDR modulators. In vivo 23, 545–550 [PubMed] [Google Scholar]
  76. Jeong Y. H., Chung S. Y., Han A. R., Sung M. K., Jang D. S., Lee J., Kwon Y., Lee H. J., Seo E. K. (2007). P-glycoprotein inhibitory activity of two phenolic compounds, (-)-syringaresinol and tricin from Sasa borealis. Chem. Biodivers. 4, 12–16 10.1002/cbdv.200790001 [DOI] [PubMed] [Google Scholar]
  77. Kam T. S., Sim K. M., Pang H. S., Koyano T., Hayashi M., Komiyama K. (2004). Cytotoxic effects and reversal of multidrug resistance by ibogan and related indole alkaloids. Bioorg. Med. Chem. Lett. 14, 4487–4489 10.1016/j.bmcl.2004.06.074 [DOI] [PubMed] [Google Scholar]
  78. Kam T. S., Subramaniam G., Sim K. M., Yoganathan K., Koyano T., Toyoshima M., Rho M. C., Hayashi M., Komiyama K. (1998). Reversal of multidrug resistance (MDR) by aspidofractinine-type indole alkaloids. Bioorg. Med. Chem. Lett. 8, 2769–2772 10.1016/S0960-894X(98)00486-7 [DOI] [PubMed] [Google Scholar]
  79. Kars M. D., Iseri O. D., Gunduz U., Molnar J. (2008). Reversal of multidrug resistance by synthetic and natural compounds in drug-resistant MCF-7 cell lines. Chemotherapy 54, 194–200 10.1159/000140462 [DOI] [PubMed] [Google Scholar]
  80. Kashiwada Y., Nishimura K., Kurimoto S., Takaishi Y. (2011). New 29-nor-cycloartanes with a 3,4-seco- and a novel 2,3-seco-structure from the leaves of Sinocalycanthus chinensis. Bioorg. Med. Chem. 19, 2790–2796 10.1016/j.bmc.2011.03.055 [DOI] [PubMed] [Google Scholar]
  81. Katsui K., Kuroda M., Wang Y., Komatsu M., Himei K., Takemoto M., Akaki S., Asaumi J., Kanazawa S., Hiraki Y. (2004). Cepharanthine enhances adriamycin sensitivity by synergistically accelerating apoptosis for adriamycin-resistant osteosarcoma cell lines, SaOS2-AR and SaOS2 F-AR. Int. J. Oncol. 25, 47–56 [PubMed] [Google Scholar]
  82. Kim J. H., Campbell B. C., Mahoney N., Chan K. L., Molyneux R. J. (2010). Chemosensitization of aflatoxigenic fungi to antimycin A and strobilurin using salicylaldehyde, a volatile natural compound targeting cellular antioxidation system. Mycopathologia 171, 291–298 10.1007/s11046-010-9356-8 [DOI] [PubMed] [Google Scholar]
  83. Kim J. H., Campbell B. C., Mahoney N., Chan K. L., Molyneux R. J., May G. (2007). Enhanced activity of strobilurin and fludioxonil by using berberine and phenolic compounds to target fungal antioxidative stress response. Lett. Appl. Microbiol. 45, 134–141 10.1111/j.1472-765X.2007.02159.x [DOI] [PubMed] [Google Scholar]
  84. Kitagawa S., Nabekura T., Nakamura Y., Takahashi T., Kashiwada Y. (2007). Inhibition of P-glycoprotein function by tannic acid and pentagalloylglucose. J. Pharm. Pharmacol. 59, 965–969 10.1211/jpp.59.7.0008 [DOI] [PubMed] [Google Scholar]
  85. Kolaczkowski M., Kolaczowska A., Luczynski J., Witek S., Goffeau A. (1998). In vivo characterization of the drug resistance profile of the major ABC transporters and other components of the yeast pleiotropic drug resistance network. Microb. Drug Resist. 4, 143–158 10.1089/mdr.1998.4.143 [DOI] [PubMed] [Google Scholar]
  86. Krishnamurthy P., Schuetz J. D. (2006). Role of ABCG2/BCRP in biology and medicine. Annu. Rev. Pharmacol. Toxicol. 46, 381–410 10.1146/annurev.pharmtox.46.120604.141238 [DOI] [PubMed] [Google Scholar]
  87. Kuete V., Ngameni B., Tangmouo J. G., Bolla J. M., Alibert-Franco S., Ngadjui B. T., Pages J. M. (2010). Efflux pumps are involved in the defense of Gram-negative bacteria against the natural products isobavachalcone and diospyrone. Antimicrob. Agents Chemother. 54, 1749–1752 10.1128/AAC.01533-09 [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Kurimoto S., Kashiwada Y., Lee K. H., Takaishi Y. (2011a). Triterpenes and a triterpene glucoside from Dysoxylum cumingianum. Phytochemistry 72, 2205–2211 10.1016/j.phytochem.2011.08.002 [DOI] [PubMed] [Google Scholar]
  89. Kurimoto S., Kashiwada Y., Morris-Natschke S. L., Lee K. H., Takaishi Y. (2011b). Dyscusins A-C, three new steroids from the leaves of Dysoxylum cumingianum. Chem. Pharm. Bull. 59, 1303–1306 10.1248/cpb.59.1303 [DOI] [PubMed] [Google Scholar]
  90. Lavie Y., Harel-Orbital T., Gaffield W., Liscovitch M. (2001). Inhibitory effect of steroidal alkaloids on drug transport and multidrug resistance in human cancer cells. Anticancer Res. 21, 1189–1194 [PubMed] [Google Scholar]
  91. Lee S. W., Hwang B. Y., Kim S. E., Kim H. M., Kim Y. H., Lee K. S., Lee J. J., Ro J.-S. (1995). Isolation of modulators for multidrug resistance from the fruits of Evodia officinalis. Korean J. Physiol. Pharmacol. 26, 344–348 [Google Scholar]
  92. Lee S. Y., Rhee Y. H., Jeong S. J., Lee H. J., Jung M. H., Kim S. H., Lee E. O., Ahn K. S. (2011). Hydrocinchonine, cinchonine, and qiuinidine potentiate paclitaxel-induced cytotoxicity and apoptosis via multidrug resistance reversal in MES-SA/DX5 uterine sarcoma cells. Environ. Toxicol. 26, 424–431 10.1002/tox.20568 [DOI] [PubMed] [Google Scholar]
  93. Lee Y.-J., Yamamoto K., Hamamoto H., Nakaune R., Hibi T. (2005). A novel ABC transporter gene ABC2 involved in multidrug susceptibility but not pathogenicity in rice blast fungus, Magnaporthe grisea. Pestic. Biochem. Physiol. 81, 13–23 10.1016/j.pestbp.2004.07.007 [DOI] [Google Scholar]
  94. Lee Y. S., Kang O. H., Choi J. G., Oh Y. C., Keum J. H., Kim S. B., Jeong G. S., Kim Y. C., Shin D. W., Kwon D. Y. (2010). Synergistic effect of emodin in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. Pharm. Biol. 48, 1285–1290 10.3109/13880201003770150 [DOI] [PubMed] [Google Scholar]
  95. Leslie E. M., Mao Q., Oleschuk C. J., Deeley R. G., Cole S. P. (2001). Modulation of multidrug resistance protein 1 (MRP1/ABCC1) transport and ATPase activities by interaction with dietary flavonoids. Mol. Pharmacol. 59, 1171–1180 [DOI] [PubMed] [Google Scholar]
  96. Li M. C., Yao Z., Takaishi Y., Tang S. A., Duan H. Q. (2011a). Isolation of novel phenolic compounds with multidrug resistance (MDR) reversal properties from Onychium japonicum. Chem. Biodivers. 8, 1112–1120 10.1002/cbdv.201000224 [DOI] [PubMed] [Google Scholar]
  97. Li S., Lei Y., Jia Y., Li N., Wink M., Ma Y. (2011b). Piperine, a piperidine alkaloid from Piper nigrum re-sensitizes P-gp, MRP1 and BCRP dependent multidrug resistant cancer cells. Phytomedicine 19, 83–87 10.1016/j.phymed.2011.06.031 [DOI] [PubMed] [Google Scholar]
  98. Limtrakul P., Chearwae W., Shukla S., Phisalphong C., Ambudkar S. V. (2007). Modulation of function of three ABC drug transporters, P-glycoprotein (ABCB1), mitoxantrone resistance protein (ABCG2) and multidrug resistance protein 1 (ABCC1) by tetrahydrocurcumin, a major metabolite of curcumin. Mol. Cell. Biochem. 296, 85–95 10.1007/s11010-006-9302-8 [DOI] [PubMed] [Google Scholar]
  99. Liu D. F., Li Y. P., Ou T. M., Huang S. L., Gu L. Q., Huang M., Huang Z. S. (2009). Synthesis and antimultidrug resistance evaluation of icariin and its derivatives. Bioorg. Med. Chem. Lett. 19, 4237–4240 10.1016/j.bmcl.2009.03.071 [DOI] [PubMed] [Google Scholar]
  100. Loo T. W., Clarke D. M. (2005). Recent progress in understanding the mechanism of P-glycoprotein-mediated drug efflux. J. Membr. Biol. 206, 173–185 10.1007/s00232-005-0792-1 [DOI] [PubMed] [Google Scholar]
  101. Lu J. J., Cai Y. J., Ding J. (2012). The short-time treatment with curcumin sufficiently decreases cell viability, induces apoptosis and copper enhances these effects in multidrug-resistant K562/A02 cells. Mol. Cell. Biochem. 360, 253–260 10.1007/s11010-011-1064-2 [DOI] [PubMed] [Google Scholar]
  102. Ma Y., Wink M. (2008). Lobeline, a piperidine alkaloid from Lobelia can reverse P-gp dependent multidrug resistance in tumor cells. Phytomedicine 15, 754–758 10.1016/j.phymed.2007.11.015 [DOI] [PubMed] [Google Scholar]
  103. Ma Y., Wink M. (2009). “Reversal of multidrug resistance (MDR) by the isoquinoline alkaloid glaucine,” in Multiple Drug Resistance, eds Meszaros A., Balogh G. (Hauppauge: Nova Science Publishers; ), 1–19 [Google Scholar]
  104. Ma Y., Wink M. (2010). The beta-carboline alkaloid harmine inhibits BCRP and can reverse resistance to the anticancer drugs mitoxantrone and camptothecin. Phytother. Res. 24, 146–149 10.1002/ptr.2860 [DOI] [PubMed] [Google Scholar]
  105. Madureira A. M., Spengler G., Molnar A., Varga A., Molnar J., Abreu P. M., Ferreira M. J. (2004). Effect of cycloartanes on reversal of multidrug resistance and apoptosis induction on mouse lymphoma cells. Anticancer Res. 24, 859–864 [PubMed] [Google Scholar]
  106. Mahringer A., Fricker G. (2010). BCRP at the blood-brain barrier, genomic regulation by 17β-estradiol. Mol. Pharm. 7, 1835–1847 10.1021/mp1001729 [DOI] [PubMed] [Google Scholar]
  107. Maliepaard M., van Gastelen M. A., Tohgo A., Hausheer F. H., van Waardenburg R. C., de Jong L. A., Pluim D., Beijnen J. H., Schellens J. H. (2001). Circumvention of breast cancer resistance protein (BCRP)-mediated resistance to camptothecins in vitro using non-substrate drugs or the BCRP inhibitor GF120918. Clin. Cancer Res. 7, 935–941 [PubMed] [Google Scholar]
  108. Mao Q., Unadkat J. D. (2005). Role of the breast cancer resistance protein (ABCG2) in drug transport. AAPS J. 7, E118–E133 10.1208/aapsj070112 [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Markham P. N., Westhaus E., Klyachko K., Johnson M. E., Neyfakh A. A. (1999). Multiple novel inhibitors of the NorA multidrug transporter of Staphylococcus aureus. Antimicrob. Agents Chemother. 43, 2404–2408 [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Martins A., Vasas A., Schelz Z., Viveiros M., Molnar J., Hohmann J., Amaral L. (2010). Constituents of Carpobrotus edulis inhibit P-glycoprotein of MDR1-transfected mouse lymphoma cells. Anticancer Res. 30, 829–835 [PubMed] [Google Scholar]
  111. Mattern M. R., Hofmann G. A., Polsky R. M., Funk L. R., McCabe F. L., Johnson R. K. (1993). In vitro and in vivo effects of clinically important camptothecin analogues on multidrug-resistant cells. Oncol. Res. 5, 467–474 [PubMed] [Google Scholar]
  112. Mei Y., Qian F., Wei D., Liu J. (2004). Reversal of cancer multidrug resistance by green tea polyphenols. J. Pharm. Pharmacol. 56, 1307–1314 10.1211/0022357044364 [DOI] [PubMed] [Google Scholar]
  113. Meschini S., Marra M., Calcabrini A., Federici E., Galeffi C., Arancia G. (2003). Voacamine, a bisindolic alkaloid from Peschiera fuchsiaefolia, enhances the cytotoxic effect of doxorubicin on multidrug-resistant tumor cells. Int. J. Oncol. 23, 1505–1513 [DOI] [PubMed] [Google Scholar]
  114. Meschini S., Marra M., Condello M., Calcabrini A., Federici E., Dupuis M. L., Cianfriglia M., Arancia G. (2005). Voacamine, an alkaloid extracted from Peschiera fuchsiaefolia, inhibits P-glycoprotein action in multidrug-resistant tumor cells. Int. J. Oncol. 27, 1597–1603 [PubMed] [Google Scholar]
  115. Michalet S., Cartier G., David B., Mariotte A. M., Dijoux-Franca M. G., Kaatz G. W., Stavri M., Gibbons S. (2007). N-caffeoylphenalkylamide derivatives as bacterial efflux pump inhibitors. Bioorg. Med. Chem. Lett. 17, 1755–1758 [DOI] [PubMed] [Google Scholar]
  116. Min Y. D., Choi S. U., Lee K. R. (2006a). Aporphine alkaloids and their reversal activity of multidrug resistance (MDR) from the stems and rhizomes of Sinomenium acutum. Arch. Pharm. Res. 29, 627–632 10.1007/BF02968246 [DOI] [PubMed] [Google Scholar]
  117. Min Y. D., Yang M. C., Lee K. H., Kim K. R., Choi S. U., Lee K. R. (2006b). Protoberberine alkaloids and their reversal activity of P-gp expressed multidrug resistance (MDR) from the rhizome of Coptis japonica Makino. Arch. Pharm. Res. 29, 757–761 10.1007/BF02968246 [DOI] [PubMed] [Google Scholar]
  118. Min Y. D., Kwon H. C., Yang M. C., Lee K. H., Choi S. U., Lee K. R. (2007). Isolation of limonoids and alkaloids from Phellodendron amurense and their multidrug resistance (MDR) reversal activity. Arch. Pharm. Res. 30, 58–63 10.1007/BF02977779 [DOI] [PubMed] [Google Scholar]
  119. Möller M., Weiss J., Wink M. (2006). Reduction of cytotoxicity of the alkaloid emetine through P-glycoprotein (MDR1/ABCB1) in human Caco-2 cells and leukaemia cell lines. Planta Med. 72, 1121–1126 10.1055/s-2006-941546 [DOI] [PubMed] [Google Scholar]
  120. Molnár J., Engi H., Gyémánt N., Schelz Z., Spengler G., Ocsovski I., Szücs M., Hohmann J., Szabo M., Tanács L. (2008). “Multidrug resistance reversal in cancer cells by selected carotenoids, flavonoids and anthocyanins,” in Bioactive Heterocycles VI, Vol. 15, ed. Motohashi N. (Berlin: Springer; ), 133–159 [Topics in Heterocyclic Chemistry]. [Google Scholar]
  121. Molnar J., Gyemant N., Mucsi I., Molnar A., Szabo M., Kortvelyesi T., Varga A., Molnar P., Toth G. (2004). Modulation of multidrug resistance and apoptosis of cancer cells by selected carotenoids. In vivo 18, 237–244 [PubMed] [Google Scholar]
  122. Najar I. A., Sachin B. S., Sharma S. C., Satti N. K., Suri K. A., Johri R. K. (2010). Modulation of P-glycoprotein ATPase activity by some phytoconstituents. Phytother. Res. 24, 454–458 10.1002/ptr.2951 [DOI] [PubMed] [Google Scholar]
  123. Nakajima A., Yamamoto Y., Taura K., Hata K., Fukumoto M., Uchinami H., Yonezawa K., Yamaoka Y. (2004). Beneficial effect of cepharanthine on overcoming drug-resistance of hepatocellular carcinoma. Int. J. Oncol. 24, 635–645 [PubMed] [Google Scholar]
  124. Nakaune R. N., Hamamoto H. H., Imada J. I., Akutsu K. A., Hibi T. H. (2002). A novel ABC transporter gene, is involved in multidrug resistance in the phytopathogenic fungus Penicillium digitatum. Mol. Genet. Genomics 267, 179–185 10.1007/s00438-002-0649-6 [DOI] [PubMed] [Google Scholar]
  125. Namanja H. A., Emmert D., Pires M. M., Hrycyna C. A., Chmielewski J. (2009). Inhibition of human P-glycoprotein transport and substrate binding using a galantamine dimer. Biochem. Biophys. Res. Commun. 388, 672–676 10.1016/j.bbrc.2009.08.056 [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Nielsen D., Skovsgaard T. (1992). P-Glycoprotein as multidrug transporter – a critical-review of current multidrug resistant cell-lines. Biochim. Biophys. Acta 1139, 169–183 [DOI] [PubMed] [Google Scholar]
  127. Nissler L., Gebhardt R., Berger S. (2004). Flavonoid binding to a multi-drug-resistance transporter protein, an STD-NMR study. Anal. Bioanal. Chem. 379, 1045–1049 10.1007/s00216-004-2701-3 [DOI] [PubMed] [Google Scholar]
  128. Nooter K., Stoter G. (1996). Molecular mechanisms of multidrug resistance in cancer chemotherapy. Pathol. Res. Pract. 192, 768–780 10.1016/S0344-0338(96)80099-9 [DOI] [PubMed] [Google Scholar]
  129. O’Donnell G., Gibbons S. (2007). Antibacterial activity of two canthin-6-one alkaloids from Allium neapolitanum. Phytother. Res. 21, 653–657 10.1002/ptr.2136 [DOI] [PubMed] [Google Scholar]
  130. Ofer M., Langguth P., Spahn-Langguth H. (2006). Bidirectional membrane transport, simulations of transport inhibition in uptake studies explain data obtained with flavonoids. Eur. J. Pharm. Sci. 29, 251–258 10.1016/j.ejps.2006.06.010 [DOI] [PubMed] [Google Scholar]
  131. Ofer M., Wolffram S., Koggel A., Spahn-Langguth H., Langguth P. (2005). Modulation of drug transport by selected flavonoids: involvement of P-gp and OCT? Eur. J. Pharm. Sci. 25, 263–271 10.1016/j.ejps.2005.03.001 [DOI] [PubMed] [Google Scholar]
  132. Ohtani H., Ikegawa T., Honda Y., Kohyama N., Morimoto S., Shoyama Y., Juichi M., Naito M., Tsuruo T., Sawada Y. (2007). Effects of various methoxyflavones on vincristine uptake and multidrug resistance to vincristine in P-gp-overexpressing K562/ADM cells. Pharm. Res. 24, 1936–1943 10.1007/s11095-007-9320-6 [DOI] [PubMed] [Google Scholar]
  133. Okura T., Ibe M., Umegaki K., Shinozuka K., Yamada S. (2010). Effects of dietary ingredients on function and expression of P-glycoprotein in human intestinal epithelial cells. Biol. Pharm. Bull. 33, 255–259 10.1248/bpb.33.255 [DOI] [PubMed] [Google Scholar]
  134. Ordway D., Hohmann J., Viveiros M., Viveiros A., Molnar J., Leandro C., Arroz M. J., Gracio M. A., Amaral L. (2003). Carpobrotus edulis methanol extract inhibits the MDR efflux pumps, enhances killing of phagocytosed S. aureus and promotes immune modulation. Phytother. Res. 17, 512–519 10.1002/ptr.1314 [DOI] [PubMed] [Google Scholar]
  135. Perez-Victoria J. M., Chiquero M. J., Conseil G., Dayan G., Di Pietro A., Barron D., Castanys S., Gamarro F. (1999). Correlation between the affinity of flavonoids binding to the cytosolic site of Leishmania tropica multidrug transporter and their efficiency to revert parasite resistance to daunomycin. Biochemistry 38, 1736–1743 10.1021/bi982455v [DOI] [PubMed] [Google Scholar]
  136. Rethy B., Hohmann J., Minorics R., Varga A., Ocsovszki I., Molnar J., Juhasz K., Falkay G., Zupko I. (2008). Antitumour properties of acridone alkaloids on a murine lymphoma cell line. Anticancer Res. 28, 2737–2743 [PubMed] [Google Scholar]
  137. Robert J., Jarry C. (2003). Multidrug resistance reversal agents. J. Med. Chem. 46, 4805–4817 10.1021/jm030183a [DOI] [PubMed] [Google Scholar]
  138. Rocha Gda G., Simoes M., Lucio K. A., Oliveira R. R., Coelho Kaplan M. A., Gattass C. R. (2007). Natural triterpenoids from Cecropia lyratiloba are cytotoxic to both sensitive and multidrug resistant leukemia cell lines. Bioorg. Med. Chem. 15, 7355–7360 10.1016/j.bmc.2007.07.020 [DOI] [PubMed] [Google Scholar]
  139. Rojas R., Caviedes L., Aponte J. C., Vaisberg A. J., Lewis W. H., Lamas G., Sarasara C., Gilman R. H., Hammond G. B. (2006). Aegicerin, the first oleanane triterpene with wide-ranging antimycobacterial activity, isolated from Clavija procera. J. Nat. Prod. 69, 845–846 10.1021/np050554l [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Scambia G., Ranelletti F. O., Panici P. B., De Vincenzo R., Bonanno G., Ferrandina G., Piantelli M., Bussa S., Rumi C., Cianfriglia M. (1994). Quercetin potentiates the effect of adriamycin in a multidrug-resistant MCF-7 human breast-cancer cell line, P-glycoprotein as a possible target. Cancer Chemother. Pharmacol. 34, 459–464 10.1007/BF00685655 [DOI] [PubMed] [Google Scholar]
  141. Schinkel A. H., Jonker J. W. (2003). Mammalian drug efflux transporters of the ATP binding cassette (ABC) family, an overview. Adv. Drug Deliv. Rev. 55, 3–29 10.1016/S0169-409X(02)00169-2 [DOI] [PubMed] [Google Scholar]
  142. Severina I. I., Muntyan M. S., Lewis K., Skulachev V. P. (2001). Transfer of cationic antibacterial agents berberine, palmatine, and benzalkonium through bimolecular planar phospholipid film and Staphylococcus aureus membrane. IUBMB Life 52, 321–324 10.1080/152165401317291183 [DOI] [PubMed] [Google Scholar]
  143. Shapiro A. B., Ling V. (1997). Effect of quercetin on Hoechst 33342 transport by purified and reconstituted P-glycoprotein. Biochem. Pharmacol. 53, 587–596 10.1016/S0006-2952(96)00826-X [DOI] [PubMed] [Google Scholar]
  144. Sharma S., Kumar M., Nargotra A., Koul S., Khan I. A. (2010). Piperine as an inhibitor of Rv1258c, a putative multidrug efflux pump of Mycobacterium tuberculosis. J. Antimicrob. Chemother. 65, 1694–1701 10.1093/jac/dkq186 [DOI] [PubMed] [Google Scholar]
  145. Smith E. C., Kaatz G. W., Seo S. M., Wareham N., Williamson E. M., Gibbons S. (2007). The phenolic diterpene totarol inhibits multidrug efflux pump activity in Staphylococcus aureus. Antimicrob. Agents Chemother. 51, 4480–4483 10.1128/AAC.00216-07 [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Solary E., Mannone L., Moreau D., Caillot D., Casasnovas R. O., Guy H., Grandjean M., Wolf J. E., Andre F., Fenaux P. (2000). Phase I study of cinchonine, a multidrug resistance reversing agent, combined with the CHVP regimen in relapsed and refractory lymphoproliferative syndromes. Leukemia 14, 2085–2094 10.1038/sj.leu.2401902 [DOI] [PubMed] [Google Scholar]
  147. Steffens J. J., Pell E. J., Tien M. (1996). Mechanisms of fungicide resistance in phytopathogenic fungi. Curr. Opin. Biotechnol. 7, 348–355 10.1016/S0958-1669(96)80043-7 [DOI] [PubMed] [Google Scholar]
  148. Steinbach D., Sell W., Voigt A., Hermann J., Zintl F., Sauerbrey A. (2002). BCRP gene expression is associated with a poor response to remission induction therapy in childhood acute myeloid leukemia. Leukemia 16, 1443–1447 10.1038/sj.leu.2402541 [DOI] [PubMed] [Google Scholar]
  149. Stermitz F. R., Beeson T. D., Mueller P. J., Hsiang J., Lewis K. (2001). Staphylococcus aureus MDR efflux pump inhibitors from a Berberis and a Mahonia (sensu strictu) species. Biochem. Syst. Ecol. 29, 793–798 10.1016/S0305-1978(01)00025-4 [DOI] [PubMed] [Google Scholar]
  150. Stermitz F. R., Lorenz P., Tawara J. N., Zenewicz L. A., Lewis K. (2000a). Synergy in a medicinal plant, antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitor. Proc. Natl. Acad. Sci. U.S.A. 97, 1433–1437 10.1073/pnas.030540597 [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Stermitz F. R., Tawara-Matsuda J., Lorenz P., Mueller P., Zenewicz L., Lewis K. (2000b), 5′-Methoxyhydnocarpin-D and pheophorbide A, Berberis species components that potentiate berberine growth inhibition of resistant Staphylococcus aureus. J. Nat. Prod. 63, 1146–1149 [DOI] [PubMed] [Google Scholar]
  152. Stermitz F. R., Scriven L. N., Tegos G., Lewis K. (2002). Two flavonols from Artemisia annua which potentiate the activity of berberine and norfloxacin against a resistant strain of Staphylococcus aureus. Planta Med. 68, 1140–1141 10.1055/s-2002-36347 [DOI] [PubMed] [Google Scholar]
  153. Suttana W., Mankhetkorn S., Poompimon W., Palagani A., Zhokhov S., Gerlo S., Haegeman G., Berghe W. V. (2010). Differential chemosensitization of P-glycoprotein overexpressing K562/Adr cells by withaferin A and Siamois polyphenols. Mol. Cancer 9, 99. 10.1186/1476-4598-9-99 [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Suzuki H., Tanabe H., Mizukami H., Inoue M. (2010). Selective regulation of multidrug resistance protein in vascular smooth muscle cells by the isoquinoline alkaloid coptisine. Biol. Pharm. Bull. 33, 677–682 10.1248/bpb.33.677 [DOI] [PubMed] [Google Scholar]
  155. Tang S., Bremner P., Kortenkamp A., Schlage C., Gray A. I., Gibbons S., Heinrich M. (2003). Biflavonoids with cytotoxic and antibacterial activity from Ochna macrocalyx. Planta Med. 69, 247–253 10.1055/s-2003-37718 [DOI] [PubMed] [Google Scholar]
  156. Taur J. S., Rodriguez-Proteau R. (2008). Effects of dietary flavonoids on the transport of cimetidine via P-glycoprotein and cationic transporters in Caco-2 and LLC-PK1 cell models. Xenobiotica 38, 1536–1550 10.1080/00498250802499467 [DOI] [PubMed] [Google Scholar]
  157. Tian H., Pan O. C. (1997). Modulation of multidrug resistance by three bisbenzyl-isoquinolines in comparison with verapamil. Zhongguo Yao Li Xue Bao 18, 455–458 [PubMed] [Google Scholar]
  158. Tournier N., Chevillard L., Megarbane B., Pirnay S., Scherrmann J. M., Decleves X. (2010). Interaction of drugs of abuse and maintenance treatments with human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2). Int. J. Neuropsychopharmacol. 13, 905–915 10.1017/S1461145709990848 [DOI] [PubMed] [Google Scholar]
  159. Trompier D., Baubichon-Cortay H., Chang X. B., Maitrejean M., Barron D., Riordon J. R., Di Pietro A. (2003). Multiple flavonoid-binding sites within multidrug resistance protein MRP1. Cell. Mol. Life Sci. 60, 2164–2177 10.1007/s00018-003-3177-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Twentyman P. R., Bleehen N. M. (1991). Resistance modification by PSC-833, a novel non-immunosuppressive cyclosporin. Eur. J. Cancer 27, 1639–1642 10.1016/0277-5379(91)90435-G [DOI] [PubMed] [Google Scholar]
  161. van der Kolk D. M., Vellenga E., Müller M., De Vries E. G. E. (1999). Multidrug resistance protein MRP1, glutathione, and related enzymes – their importance in acute myeloid leukemia. Adv. Exp. Med. Biol. 457, 187–198 10.1007/978-1-4615-4811-9_20 [DOI] [PubMed] [Google Scholar]
  162. van Gorkom B. A., Timmer-Bosscha H., de Jong S., van der Kolk D. M., Kleibeuker J. H., de Vries E. G. (2002). Cytotoxicity of rhein, the active metabolite of sennoside laxatives, is reduced by multidrug resistance-associated protein 1. Br. J. Cancer 86, 1494–1500 10.1038/sj.bjc.6600255 [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Versantvoort C. H., Broxterman H. J., Lankelma J., Feller N., Pinedo H. M. (1994). Competitive inhibition by genistein and ATP dependence of daunorubicin transport in intact MRP overexpressing human small cell lung cancer cells. Biochem. Pharmacol. 48, 1129–1136 10.1016/0006-2952(94)90149-X [DOI] [PubMed] [Google Scholar]
  164. Versantvoort C. H., Rhodes T., Twentyman P. R. (1996). Acceleration of MRP-associated efflux of rhodamine 123 by genistein and related compounds. Br. J. Cancer 74, 1949–1954 10.1038/bjc.1996.658 [DOI] [PMC free article] [PubMed] [Google Scholar]
  165. Wang F. P., Wang L., Yang J. S., Nomura M., Miyamoto K. (2005). Reversal of P-glycoprotein-dependent resistance to vinblastine by newly synthesized bisbenzylisoquinoline alkaloids in mouse leukemia P388 cells. Biol. Pharm. Bull. 28, 1979–1982 10.1248/bpb.28.1966 [DOI] [PubMed] [Google Scholar]
  166. Wang L., Bai L., Nagasawa T., Hasegawa T., Yang X., Sakai J., Bai Y., Kataoka T., Oka S., Hirose K. (2008). Bioactive triterpene saponins from the roots of Phytolacca americana. J. Nat. Prod. 71, 35–40 10.1021/np7007522 [DOI] [PubMed] [Google Scholar]
  167. Watanabe T., Tsuge H., Oh-Hara T., Naito M., Tsuruo T. (1995). Comparative study on reversal efficacy of SDZ PSC 833, cyclosporin A and verapamil on multidrug resistance in vitro and in vivo. Acta Oncol 34, 235–241 10.3109/02841869509093961 [DOI] [PubMed] [Google Scholar]
  168. Weerasinghe P., Hallock S., Tang S. C., Trump B., Liepins A. (2006). Sanguinarine overcomes P-glycoprotein-mediated multidrug-resistance via induction of apoptosis and oncosis in CEM-VLB 1000 cells. Exp. Toxicol. Pathol. 58, 21–30 10.1016/j.etp.2006.01.008 [DOI] [PubMed] [Google Scholar]
  169. Wei D., Mei Y., Liu J. (2003). Quantification of doxorubicin and validation of reversal effect of tea polyphenols on multidrug resistance in human carcinoma cells. Biotechnol. Lett. 25, 291–294 10.1023/A:1024034508136 [DOI] [PubMed] [Google Scholar]
  170. Wesolowska O., Hendrich A. B., Laniapietrzak B., Wisniewski J., Molnar J., Ocsovszki I., Michalak K. (2009). Perturbation of the lipid phase of a membrane is not involved in the modulation of MRP1 transport activity by flavonoids. Cell. Mol. Biol. Lett. 14, 199–221 10.2478/s11658-008-0044-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. Wesolowska O., Wisniewski J., Duarte N., Ferreira M. J., Michalak K. (2007). Inhibition of MRP1 transport activity by phenolic and terpenic compounds isolated from Euphorbia species. Anticancer Res. 27, 4127–4133 [PubMed] [Google Scholar]
  172. Wijnholds J., deLange E. C., Scheffer G. L., van den Berg D. J., Mol C. A., van der Valk M., Schinkel A. H., Scheper R. J., Breimer D. D., Borst P. (2000). Multidrug resistance protein 1 protects the choroid plexus epithelium and contributes to the blood-cerebrospinal fluid barrier. J. Clin. Invest. 105, 279–285 10.1172/JCI8267 [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Wink M. (1988). Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theor. Appl. Genet. 75, 225–233 10.1007/BF00303957 [DOI] [Google Scholar]
  174. Wink M. (1993). Allelochemical properties and the raison d’être of alkaloids. Alkaloids Chem. Biol. 43, 1–118 [Google Scholar]
  175. Wink M. (2000). Interference of alkaloids with neuroreceptors and ion channels. Nat. Prod. Res. 21, 3–129 [Google Scholar]
  176. Wink M. (2003). Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64, 3–19 10.1016/S0031-9422(03)00300-5 [DOI] [PubMed] [Google Scholar]
  177. Wink M. (2007). Molecular modes of action of cytotoxic alkaloids- from DNA intercalation, spindle poisoning, topoisomerase inhibition to apoptosis and multiple drug resistance. Alkaloids Chem. Biol. 64, 1–48 10.1016/S1099-4831(07)64001-2 [DOI] [PubMed] [Google Scholar]
  178. Wink M. (2008a). Plant secondary metabolism: diversity, function and its evolution. Nat. Prod. Commun. 3, 1205–1216 [Google Scholar]
  179. Wink M. (2008b). Evolutionary advantage and molecular modes of action of multi-component mixtures used in phytomedicine. Curr. Drug Metab. 9, 996–1009 10.2174/138920008786927794 [DOI] [PubMed] [Google Scholar]
  180. Wink M. (2010a). Functions and Biotechnology of Plant Secondary Metabolites – Annual Plant Reviews, Vol. 39 Chichester: Wiley-Blackwell [Google Scholar]
  181. Wink M. (2010b). Biochemistry of Plant Secondary Metabolism – Annual Plant Reviews, Vol. 40 Chichester: Wiley-Blackwell [Google Scholar]
  182. Wink M., Schimmer O. (2010). “Molecular modes of action of defensive secondary metabolites,” in Functions and Biotechnology of Plant Secondary Metabolites, Vol. 39, ed. Wink M. (Chichester: Wiley-Blackwell; ), 21–161 [Google Scholar]
  183. Xu W. L., Shen H. L., Ao Z. F., Chen B. A., Xia W., Gao F., Zhang Y. N. (2006). Combination of tetrandrine as a potential-reversing agent with daunorubicin, etoposide and cytarabine for the treatment of refractory and relapsed acute myelogenous leukemia. Leuk. Res. 30, 407–413 10.1016/j.leukres.2005.05.023 [DOI] [PubMed] [Google Scholar]
  184. Yasuda K., Lan L. B., Sanglard D., Furuya K., Schuetz J. D., Schuetz E. G. (2002). Interaction of cytochrome P450 3A inhibitors with P-glycoprotein. J. Pharmacol. Exp. Ther. 303, 323–332 10.1124/jpet.102.037549 [DOI] [PubMed] [Google Scholar]
  185. Ye J., Zheng Y., Liu D. (2009). Reversal effect and its mechanism of ampelopsin on multidrug resistance in K562/ADR cells. Zhongguo Zhong Yao Za Zhi 34, 761–765 [PubMed] [Google Scholar]
  186. Yoo H. H., Lee M., Chung H. J., Lee S. K., Kim D.-H. (2007). Effects of diosmin, a flavonoid glycoside in citrus fruits, on P-glycoprotein-mediated drug efflux in human intestinal Caco-2 cells. J. Agric. Food Chem. 55, 7620–7625 10.1021/jf062603l [DOI] [PubMed] [Google Scholar]
  187. Yoshida N., Takagi A., Kitazawa H., Kawakami J., Adachi I. (2005). Inhibition of P-glycoprotein-mediated transport by extracts of and monoterpenoids contained in Zanthoxyli fructus. Toxicol. Appl. Pharmacol. 209, 167–173 10.1016/j.taap.2005.04.001 [DOI] [PubMed] [Google Scholar]
  188. You G., Morris M. E. (2007). Drug Transporters- Molecular Characterization and Role in Drug Disposition. Hoboken, NJ: Wiley-Interscience [Google Scholar]
  189. You M., Ma X., Mukherjee R., Farnsworth N. R., Cordell G. A., Kinghorn A. D., Pezzuto J. M. (1994). Indole alkaloids from Peschiera laeta that enhance vinblastine-mediated cytotoxicity with multidrug-resistant cells. J. Nat. Prod. 57, 1517–1522 10.1021/np50113a007 [DOI] [PubMed] [Google Scholar]
  190. You M., Wickramaratne D. B., Silva G. L., Chai H., Chagwedera T. E., Farnsworth N. R., Cordell G. A., Kinghorn A. D., Pezzuto J. M. (1995). (-)-Roemerine, an aporphine alkaloid from Annona senegalensis that reverses the multidrug-resistance phenotype with cultured cells. J. Nat. Prod. 58, 598–604 10.1021/np50118a021 [DOI] [PubMed] [Google Scholar]
  191. Zamora J. M., Pearce H. L., Beck W. T. (1988). Physical-chemical properties shared by compounds that modulate multidrug resistance in human leukemic cells. Mol. Pharmacol. 33, 454–462 [PubMed] [Google Scholar]
  192. Zhang S., Morris M. E. (2003). Effects of the flavonoids biochanin A, morin, phloretin, and silymarin on P-glycoprotein-mediated transport. J. Pharmacol. Exp. Ther. 304, 1258–1267 10.1124/jpet.102.044412 [DOI] [PubMed] [Google Scholar]
  193. Zhang S., Yang X., Morris M. E. (2004). Flavonoids are inhibitors of breast cancer resistance protein (ABCG2)-mediated transport. Mol. Pharmacol. 65, 1208–1216 10.1124/mol.65.5.1208 [DOI] [PubMed] [Google Scholar]
  194. Zhao M., Bai L., Wang L., Toki A., Hasegawa T., Kikuchi M., Abe M., Sakai J., Hasegawa R., Bai Y. (2007). Bioactive cardenolides from the stems and twigs of Nerium oleander. J. Nat. Prod. 70, 1098–1103 10.1021/np0703850 [DOI] [PubMed] [Google Scholar]
  195. Zhou D. C., Zittoun R., Marie J. P. (1995). Homoharringtonine, an effective new natural product in cancer chemotherapy. Bull. Cancer 82, 987–995 [PubMed] [Google Scholar]
  196. Zhou S., Lim L. Y., Chowbay B. (2004). Herbal modulation of P-glycoprotein. Drug Metab. Rev. 36, 57–104 10.1081/DMR-120028427 [DOI] [PubMed] [Google Scholar]
  197. Zhu A., Wang X., Guo Z. (2001). Study of tea polyphenol as a reversal agent for carcinoma cell lines’ multidrug resistance (study of TP as a MDR reversal agent). Nucl. Med. Biol. 28, 735–740 10.1016/S0969-8051(00)90202-6 [DOI] [PubMed] [Google Scholar]
  198. Zhu X., Sui M., Fan W. (2005). In vitro and in vivo characterizations of tetrandrine on the reversal of P-glycoprotein-mediated drug resistance to paclitaxel. Anticancer Res. 25, 1953–1962 [PubMed] [Google Scholar]
  199. Zupko I., Rethy B., Hohmann J., Molnar J., Ocsovszki I., Falkay G. (2009). Antitumor activity of alkaloids derived from Amaryllidaceae species. In vivo 23, 41–48 [PubMed] [Google Scholar]

Articles from Frontiers in Microbiology are provided here courtesy of Frontiers Media SA

RESOURCES