Abstract
The minor hemoglobin components, hemoglobin AIa+b and hemoglobin AIc, were measured in the 10% youngest and 10% oldest erythrocytes of 15 normal and 14 diabetic subjects. Erythrocyte fractions were obtained by centrifugation in isopyknic concentrations of dextran: 28.5% of 40,000-mol wt dextran yeilded the 10% lightest of young cells, and 30.5% dextran provided the 10% heaviest or old erythrocytes. Both normal and diabetic erythrocytes contain increased amounts of Hb AIa+b and Hb AIc in old as compared to young cells. In normal subjects, young cells contained 1.2+/-0.2%, and old cells contained 1.8+/-0.4% Hb AIa+b. Corresponding values for diabetic cells were 1.7+/-0.6 and 2.6+/-0.9%. Hb AIc increased from 3.1+/-0.8 to 6.0+/-1.1% in normals and from 5.1+/-2.1 to 10.1+/-3.7% in diabetics. The results indicate that both cell age and diabetes are significant determinants of the amounts of Hb AIa+b and Hb AIc.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BERNSTEIN R. E. Alterations in metabolic energetics and cation transport during aging of red cells. J Clin Invest. 1959 Sep;38:1572–1586. doi: 10.1172/JCI103936. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beisswenger P. G., Spiro R. G. Human glomerular basement membrane: chemical alteration in diabetes mellitus. Science. 1970 May 1;168(3931):596–598. doi: 10.1126/science.168.3931.596. [DOI] [PubMed] [Google Scholar]
- Bookchin R. M., Gallop P. M. Structure of hemoglobin AIc: nature of the N-terminal beta chain blocking group. Biochem Biophys Res Commun. 1968 Jul 11;32(1):86–93. doi: 10.1016/0006-291x(68)90430-0. [DOI] [PubMed] [Google Scholar]
- Bunn H. F., Briehl R. W. The interaction of 2,3-diphosphoglycerate with various human hemoglobins. J Clin Invest. 1970 Jun;49(6):1088–1095. doi: 10.1172/JCI106324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bunn H. F., Haney D. N., Gabbay K. H., Gallop P. M. Further identification of the nature and linkage of the carbohydrate in hemoglobin A1c. Biochem Biophys Res Commun. 1975 Nov 3;67(1):103–109. doi: 10.1016/0006-291x(75)90289-2. [DOI] [PubMed] [Google Scholar]
- Ditzel J. Functional microangiopathy in diabetes mellitus. Diabetes. 1968 Jun;17(6):388–397. doi: 10.2337/diab.17.6.388. [DOI] [PubMed] [Google Scholar]
- Ditzel J., Standl E. The oxygen transport system of red blood cells during diabetic ketoacidosis and recovery. Diabetologia. 1975 Aug;11(4):255–260. doi: 10.1007/BF00422388. [DOI] [PubMed] [Google Scholar]
- Ditzel J., Standl E. The problem of tissue oxygenation in diabetes mellitus. I. Its relation to the early functional changes in the microcirculation of diabetic subjects. Acta Med Scand Suppl. 1975;578:49–58. [PubMed] [Google Scholar]
- Ditzel J., Standl E. The problem of tissue oxygenation in diabetes mellitus. Acta Med Scand Suppl. 1975;578:59–68. doi: 10.1111/j.0954-6820.1975.tb06503.x. [DOI] [PubMed] [Google Scholar]
- Ditzel J. The problems of tissue oxygenation in diabetes mellitus. III. The "three-in-one concept" for the development of diabetic microangiopathy and a rational approach to its prophylaxis. Acta Med Scand Suppl. 1975;578:69–83. [PubMed] [Google Scholar]
- Edwards M. J., Rigas D. A. Electrolyte-labile increase of oxygen affinity during in vivo aging of hemoglobin. J Clin Invest. 1967 Oct;46(10):1579–1588. doi: 10.1172/JCI105649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holmquist W. R., Schroeder W. A. A new N-terminal blocking group involving a Schiff base in hemoglobin AIc. Biochemistry. 1966 Aug;5(8):2489–2503. doi: 10.1021/bi00872a002. [DOI] [PubMed] [Google Scholar]
- Holquist W. R., Schroeder W. A. The in vitro biosynthesis of hemoglobin AIc. Biochemistry. 1966 Aug;5(8):2504–2512. doi: 10.1021/bi00872a003. [DOI] [PubMed] [Google Scholar]
- KEITER H. G., BERMAN H., JONES H., MACLACHLAN E. The chemical composition of normal human red blood cells, including variability among centrifuged cells. Blood. 1955 Apr;10(4):370–376. [PubMed] [Google Scholar]
- Koenig R. J., Cerami A. Synthesis of hemoglobin AIc in normal and diabetic mice: potential model of basement membrane thickening. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3687–3691. doi: 10.1073/pnas.72.9.3687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEIF R. C., VINOGRAD J. THE DISTRIBUTION OF BUOYANT DENSITY OF HUMAN ERYTHROCYTES IN BOVINE ALBUMIN SOLUTIONS. Proc Natl Acad Sci U S A. 1964 Mar;51:520–528. doi: 10.1073/pnas.51.3.520. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Like A. A., Lavine R. L., Poffenbarger P. L., Chick W. L. Studies in the diabetic mutant mouse. VI. Evolution of glomerular lesions and associated proteinuria. Am J Pathol. 1972 Feb;66(2):193–224. [PMC free article] [PubMed] [Google Scholar]
- Rahbar S., Blumenfeld O., Ranney H. M. Studies of an unusual hemoglobin in patients with diabetes mellitus. Biochem Biophys Res Commun. 1969 Aug 22;36(5):838–843. doi: 10.1016/0006-291x(69)90685-8. [DOI] [PubMed] [Google Scholar]
- Schulman H. M. The fractionation of rabbit reticulocytes in dextran density gradients. Biochim Biophys Acta. 1967 Oct 9;148(1):251–255. doi: 10.1016/0304-4165(67)90300-5. [DOI] [PubMed] [Google Scholar]
- Trivelli L. A., Ranney H. M., Lai H. T. Hemoglobin components in patients with diabetes mellitus. N Engl J Med. 1971 Feb 18;284(7):353–357. doi: 10.1056/NEJM197102182840703. [DOI] [PubMed] [Google Scholar]