Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1976 Dec;58(6):1407–1418. doi: 10.1172/JCI108596

The role of insulin and glucagon in the regulation of basal glucose production in the postabsorptive dog.

A D Cherrington, J L Chiasson, J E Liljenquist, A S Jennings, U Keller, W W Lacy
PMCID: PMC333312  PMID: 993351

Abstract

The aim of the present experiments was to determine the role of insulin and glucagon in the regulation of basal glucose production in dogs fasted overnight. A deficiency of either or both pancreatic hormones was achieved by infusin somatostatin (1 mug/kg per min), a potent inhibitor of both insulin and glucagon secretion, alone or in combination with intraportal replacement infusions of either pancreatic hormone. Infusion of somatostatin alone caused the arterial levels of insulin and glucagon to drop rapidly by 72+/-6 and 81+/-8%, respectively. Intraportal infusion of insulin and glucagon at rates of 400 muU/kg per min and 1 ng/kg per min, respectively, resulted in the maintenance of the basal levels of each hormone. Glucose production was measured using tracer (primed constant infusion of [3-3H]glucose) and arteriovenous difference techniques. Isolated glucagon deficiency resulted in a 35+/-5% (P less than 0.05) rapid and sustained decrease in glucose production which was abolished upon restoration of the plasma glucagon level. Isolated insulin deficiency resulted in a 52+/-16% (P less than 0.01) increase in the rate of glucose production which was abolished when the insulin level was restored. Somatostatin had no effect on glucose production when the changes in the pancreatic hormone levels which it normally induces were prevented by simultaneous intraportal infusion of both insulin and glucagon. In conclusion, in the anesthetized dog fasted overnight; (a) basal glucagon is responsible for at least one-third of basal glucose production, (b) basal insulin prevents the increased glucose production which would result from the unrestrained action of glucagon, and (c) somatostatin has no acute effects on glucose turnover other than those it induces through perturbation of pancreatic hormone secretion. This study indicates that the opposing actions of the two pancreatic hormones are important in the regulation of basal glucose production in the postabsorptive state.

Full text

PDF
1407

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguilar-Parada E., Eisentraut A. M., Unger R. H. Pancreatic glucagon secretion in normal and diabetic subjects. Am J Med Sci. 1969 Jun;257(6):415–419. doi: 10.1097/00000441-196906000-00008. [DOI] [PubMed] [Google Scholar]
  2. Alford F. P., Bloom S. R., Nabarro J. D., Hall R., Besser G. M., Coy D. H., Kastin A. J., Schally A. V. Glucagon control of fasting glucose in man. Lancet. 1974 Oct 26;2(7887):974–977. doi: 10.1016/s0140-6736(74)92071-6. [DOI] [PubMed] [Google Scholar]
  3. Altszuler N., Barkai A., Bjerknes C., Gottlieb B., Steele R. Glucose turnover values in the dog obtained with various species of labeled glucose. Am J Physiol. 1975 Dec;229(6):1662–1667. doi: 10.1152/ajplegacy.1975.229.6.1662. [DOI] [PubMed] [Google Scholar]
  4. Altszuler N., Gottlieb B., Hampshire J. Interaction of somatostatin, glucagon, and insulin on hepatic glucose output in the normal dog. Diabetes. 1976 Feb;25(2):116–121. doi: 10.2337/diab.25.2.116. [DOI] [PubMed] [Google Scholar]
  5. BISHOP J. S., STEELE R., ALTSZULER N., DUNN A., BJERKNES C., DEBODO R. C. EFFECTS OF INSULIN ON LIVER GLYCOGEN SYNTHESIS AND BREAKDOWN IN THE DOG. Am J Physiol. 1965 Feb;208:307–316. doi: 10.1152/ajplegacy.1965.208.2.307. [DOI] [PubMed] [Google Scholar]
  6. Cherrington A. D., Kawamori R., Pek S., Vranic M. Arginine infusion in dogs. Model for the roles of insulin and glucagon in regulating glucose turnover and free fatty acid levels. Diabetes. 1974 Oct;23(10):805–815. doi: 10.2337/diab.23.10.805. [DOI] [PubMed] [Google Scholar]
  7. Cherrington A. D., Vranic M. Effect of arginine on glucose turnover and plasma free fatty acids in normal dogs. Diabetes. 1973 Jul;22(7):537–543. doi: 10.2337/diab.22.7.537. [DOI] [PubMed] [Google Scholar]
  8. Cherrington A., Vranic M., Fono P., Kovacevic N. Effect of glucagon on glucose turnover and plasma free fatty acids in depancreatized dogs maintained on matched insulin infusions. Can J Physiol Pharmacol. 1972 Oct;50(10):946–954. doi: 10.1139/y72-137. [DOI] [PubMed] [Google Scholar]
  9. Chiasson J. L., Liljenquist J. E., Sinclair-Smith B. C., Lacy W. W. Gluconeogenesis from alanine in normal postabsorptive man. Intrahepatic stimulatory effect of glucagon. Diabetes. 1975 Jun;24(6):574–584. doi: 10.2337/diab.24.6.574. [DOI] [PubMed] [Google Scholar]
  10. Chideckel E. W., Palmer J., Koerker D. J., Ensinck J., Davidson M. B., Goodner C. J. Somatostatin blockade of acute and chronic stimuli of the endocrine pancreas and the consequences of this blockade on glucose homeostasis. J Clin Invest. 1975 Apr;55(4):754–762. doi: 10.1172/JCI107986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cowan J. S., Hetenyi G., Jr Glucoregulatory responses in normal and diabetic dogs recorded by a new tracer method. Metabolism. 1971 Apr;20(4):360–372. doi: 10.1016/0026-0495(71)90098-9. [DOI] [PubMed] [Google Scholar]
  12. Curry D. L., Bennett L. L. Does somatostatin inhibition of insulin secretion involve two mechanisms of action? Proc Natl Acad Sci U S A. 1976 Jan;73(1):248–251. doi: 10.1073/pnas.73.1.248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Curry D. L., Bennett L. L. Reversal of somatostatin inhibition of insulin secretion by calcium. Biochem Biophys Res Commun. 1974 Oct 8;60(3):1015–1019. doi: 10.1016/0006-291x(74)90414-8. [DOI] [PubMed] [Google Scholar]
  14. DEBODO R. C., STEELE R., ALTSZULER N., DUNN A., BISHOP J. S. ON THE HORMONAL REGULATION OF CARBOHYDRATE METABOLISM; STUDIES WITH C14 GLUCOSE. Recent Prog Horm Res. 1963;19:445–488. [PubMed] [Google Scholar]
  15. Efendic S., Grill V., Luft R. Inhibition by somatostatin of glucose induced 3':5'-monophsophate (cyclic AMP) accumulation and insulin release in isolated pancreatic islets of the rat. FEBS Lett. 1975 Jul 15;55(1):131–133. doi: 10.1016/0014-5793(75)80977-x. [DOI] [PubMed] [Google Scholar]
  16. Efendić S., Claro A., Laft R. Studies on the mechanism of somatostatin action on insulin release. III. Effect of somatostatin on arginine induced release of insulin and glucagon in man and perfused rat pancreas. Acta Endocrinol (Copenh) 1976 Apr;81(4):753–761. [PubMed] [Google Scholar]
  17. Fischer U., Hommel H., Gottschling H-D, Heinke P., Jutzi E. Estimation of pancreatic IRI output rate and its relations to glucose tolerance in normal anasthetized dogs. Diabetologia. 1975 Aug;11(4):291–299. doi: 10.1007/BF00422394. [DOI] [PubMed] [Google Scholar]
  18. Fujimoto W. Y., Ensinck J. W. Somatostatin inhibition of insulin and glucagon secretion in rat islet culture: reversal by ionophore A23187. Endocrinology. 1976 Jan;98(1):259–262. doi: 10.1210/endo-98-1-259. [DOI] [PubMed] [Google Scholar]
  19. Gerich J. E., Lorenzi M., Hane S., Gustafson G., Guillemin R., Forsham P. H. Evidence for a physiologic role of pancreatic glucagon in human glucose homeostasis: studies with somatostatin. Metabolism. 1975 Feb;24(2):175–182. doi: 10.1016/0026-0495(75)90018-9. [DOI] [PubMed] [Google Scholar]
  20. Greenway C. V., Stark R. D. Hepatic vascular bed. Physiol Rev. 1971 Jan;51(1):23–65. doi: 10.1152/physrev.1971.51.1.23. [DOI] [PubMed] [Google Scholar]
  21. Ishiwata K., Hetenyi G., Jr, Vranic M. Effect of D-glucose or D-ribose on the turnover of glucose in pancreatectomized dogs maintained on a matched intraportal infusion of insulin. Diabetes. 1969 Dec;18(12):820–827. doi: 10.2337/diab.18.12.820. [DOI] [PubMed] [Google Scholar]
  22. Iversen J. Inhibition of pancreatic glucagon release by somatostatin: in vitro. Scand J Clin Lab Invest. 1974 Apr;33(2):125–129. [PubMed] [Google Scholar]
  23. Iversen J. Secretion of glucagon from the isolated, perfused canine pancreas. J Clin Invest. 1971 Oct;50(10):2123–2136. doi: 10.1172/JCI106706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jefferson L. S., Exton J. H., Butcher R. W., Sutherland E. W., Park C. R. Role of adenosine 3',5'-monophosphate in the effects of insulin and anti-insulin serum on liver metabolism. J Biol Chem. 1968 Mar 10;243(5):1031–1038. [PubMed] [Google Scholar]
  25. KREBS H. THE CROONIAN LECTURE, 1963. GLUCONEOGENESIS. Proc R Soc Lond B Biol Sci. 1964 Mar 17;159:545–564. doi: 10.1098/rspb.1964.0019. [DOI] [PubMed] [Google Scholar]
  26. Kanazawa Y., Kuzuya T., Ide T. Insulin output via the pancreatic vein and plasma insulin response to glucose in dogs. Am J Physiol. 1968 Sep;215(3):620–626. doi: 10.1152/ajplegacy.1968.215.3.620. [DOI] [PubMed] [Google Scholar]
  27. Kaneko T., Oka H., Munemure M., Suzuki S., Yasuda H. Stimulation of guanosine 3',5'-cyclic monophosphate accumulation in rat anterior pituitary gland in vitro by synthetic somatostatin. Biochem Biophys Res Commun. 1974 Nov 6;61(1):53–57. doi: 10.1016/0006-291x(74)90532-4. [DOI] [PubMed] [Google Scholar]
  28. Katz J., Dunn A. Glucose-2-t as a tracer for glucose metabolism. Biochemistry. 1967 Jan;6(1):1–5. doi: 10.1021/bi00853a001. [DOI] [PubMed] [Google Scholar]
  29. Koerker D. J., Ruch W., Chideckel E., Palmer J., Goodner C. J., Ensinck J., Gale C. C. Somatostatin: hypothalamic inhibitor of the endocrine pancreas. Science. 1974 Apr 26;184(4135):482–484. doi: 10.1126/science.184.4135.482. [DOI] [PubMed] [Google Scholar]
  30. LEEVY C. M., MENDENHALL C. L., LESKO W., HOWARD M. M. Estimation of hepatic blood flow with indocyanine green. J Clin Invest. 1962 May;41:1169–1179. doi: 10.1172/JCI104570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Leblanc H., Yen S. S. Comparison of cylic and linear forms of somatostatin in the inhibiton of growth hormone, insulin and glucagon Secretion. J Clin Endocrinol Metab. 1975 May;40(5):906–908. doi: 10.1210/jcem-40-5-906. [DOI] [PubMed] [Google Scholar]
  32. Liljenquist J. E., Bomboy J. D., Lewis S. B., Sinclair-Smith B. C., Felts P. W., Lacy W. W., Crofford O. B., Liddle G. W. Effect of glucagon on net splanchnic cyclic AMP production in normal and diabetic men. J Clin Invest. 1974 Jan;53(1):198–204. doi: 10.1172/JCI107538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. MADISON L. L., COMBES B., ADAMS R., STRICKLAND W. The physiological significance of the secretion of endogenous insulin into the portal circulation. III. Evidence for a direct immediate effect of insulin on the balance of glucose across the liver. J Clin Invest. 1960 Mar;39:507–522. doi: 10.1172/JCI104065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Mackrell D. J., Sokal J. E. Antagonism between the effects of insulin and glucagon on the isolated liver. Diabetes. 1969 Nov;18(11):724–732. doi: 10.2337/diab.18.11.724. [DOI] [PubMed] [Google Scholar]
  35. Marliss E. B., Girardier L., Seydoux J., Wollheim C. B., Kanazawa Y., Orci L., Renold A. E., Porte D., Jr Glucagon release induced by pancreatic nerve stimulation in the dog. J Clin Invest. 1973 May;52(5):1246–1259. doi: 10.1172/JCI107292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Mashiter K., Harding P. E., Chou M., Mashiter G. D., Stout J., Diamond D., Field J. B. Persistent pancreatic glucagon but not insulin response to arginine in pancreatectomized dogs. Endocrinology. 1975 Mar;96(3):678–693. doi: 10.1210/endo-96-3-678. [DOI] [PubMed] [Google Scholar]
  37. Matsuyama T., Foà P. P. Plasma glucose, insulin, pancreatic, and enteroglucagon levels in normal and depancreatized dogs. Proc Soc Exp Biol Med. 1974 Oct;147(1):97–102. doi: 10.3181/00379727-147-38288. [DOI] [PubMed] [Google Scholar]
  38. Menahan L. A., Wieland O. Interactions of glucagon and insulin on the metabolism of perfused livers from fasted rats. Eur J Biochem. 1969 May 1;9(1):55–62. doi: 10.1111/j.1432-1033.1969.tb00575.x. [DOI] [PubMed] [Google Scholar]
  39. Mortimore G. E., King E., Jr, Mondon C. E., Glinsmann W. H. Effects of insulin on net carbohydrate alterations in perfused rat liver. Am J Physiol. 1967 Jan;212(1):179–183. doi: 10.1152/ajplegacy.1967.212.1.179. [DOI] [PubMed] [Google Scholar]
  40. Oliver J. R., Wagle S. R. Studies on the inhibition of insulin release, glycogenolysis and gluconeogenesis by somatostatin in the rat islets of langerhans and isolated hepatocytes. Biochem Biophys Res Commun. 1975 Feb 3;62(3):772–777. doi: 10.1016/0006-291x(75)90466-0. [DOI] [PubMed] [Google Scholar]
  41. Parrilla R., Goodman M. N., Toews C. J. Effect of glucagon: insulin ratios on hepatic metabolism. Diabetes. 1974 Sep;23(9):725–731. doi: 10.2337/diab.23.9.725. [DOI] [PubMed] [Google Scholar]
  42. Radziuk J., Norwich K. H., Vranic M. Measurement and validation of nonsteady turnover rates with applications to the inulin and glucose systems. Fed Proc. 1974 Jul;33(7):1855–1864. [PubMed] [Google Scholar]
  43. STEELE R., BISHOP J. S., DUNN A., ALTSZULER N., RATHBEB I., DEBODO R. C. INHIBITION BY INSULIN OF HEPATIC GLUCOSE PRODUCTION IN THE NORMAL DOG. Am J Physiol. 1965 Feb;208:301–306. doi: 10.1152/ajplegacy.1965.208.2.301. [DOI] [PubMed] [Google Scholar]
  44. Sakurai H., Dobbs R. E., Unger R. H. The role of glucagon in the pathogenesis of the endogenous hyperglycemia of diabetes mellitus. Metabolism. 1975 Nov;24(11):1287–1297. doi: 10.1016/0026-0495(75)90067-0. [DOI] [PubMed] [Google Scholar]
  45. Sasaki H., Rubalcava B., Baetens D., Blazquez E., Srikant C. B., Orci L., Unger R. H. Identification of glucagon in the gastrointestinal tract. J Clin Invest. 1975 Jul;56(1):135–145. doi: 10.1172/JCI108062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. TARZL T. E., SCANLAN W. A., THORNTON F. H., WENDEL R. M., STEARN B., LARZARUS R. E., MCALLISTER W., SHOEMAKER W. C. EFFECT OF INSULIN ON GLUCOSE METABOLISM IN THE DOG AFTER PORTACAVAL TRANSPOSITION. Am J Physiol. 1965 Jul;209:221–226. doi: 10.1152/ajplegacy.1965.209.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Unger R. H. The Banting Memorial Lecture 1975. Diabetes and the alpha cell. Diabetes. 1976 Feb;25(2):136–151. doi: 10.2337/diab.25.2.136. [DOI] [PubMed] [Google Scholar]
  48. Valverde I., Dobbs R., Unger R. H. Heterogeneity of plasma glucagon immunoreactivity in normal, depancreatized, and alloxan-diabetic dogs. Metabolism. 1975 Sep;24(9):1021–1028. doi: 10.1016/0026-0495(75)90095-5. [DOI] [PubMed] [Google Scholar]
  49. Valverde I., Villanueva M. L., Lozano I., Marco J. Presence of glucagon immunoreactivity in the globulin fraction of human plasma ("big plasma glucagon"). J Clin Endocrinol Metab. 1974 Dec;39(6):1090–1098. doi: 10.1210/jcem-39-6-1090. [DOI] [PubMed] [Google Scholar]
  50. Vranic M., Pek S., Kawamori R. Increased "glucagon immunoreactivity" in plasma of totally depancreatized dogs. Diabetes. 1974 Nov;23(11):905–912. doi: 10.2337/diab.23.11.905. [DOI] [PubMed] [Google Scholar]
  51. Vranic M., Wrenshall G. A. Matched rates of insulin infusion and secretion and concurrent tracer-determined rates of glucose appearance and disappearance in fasting dogs. Can J Physiol Pharmacol. 1968 May;46(3):383–390. doi: 10.1139/y68-058. [DOI] [PubMed] [Google Scholar]
  52. WALL J. S., STEELE R., DE BODO R. C., ALTSZULER N. Effect of insulin on utilization and production of circulating glucose. Am J Physiol. 1957 Apr;189(1):43–50. doi: 10.1152/ajplegacy.1957.189.1.43. [DOI] [PubMed] [Google Scholar]
  53. Wagle S. R. Interrelationship of insulin and glucagon ratios on carbohydrate metabolism in isolated hepatocytes containing high glycogen. Biochem Biophys Res Commun. 1975 Dec 1;67(3):1019–1027. doi: 10.1016/0006-291x(75)90776-7. [DOI] [PubMed] [Google Scholar]
  54. Weir G. C., Knowlton S. D., Martin D. B. High molecular weight glucagon-like immunoreactivity in plasma. J Clin Endocrinol Metab. 1975 Feb;40(2):296–302. doi: 10.1210/jcem-40-2-296. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES