Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1990 Feb 11;18(3):493–499. doi: 10.1093/nar/18.3.493

The synthesis of polyamide-oligonucleotide conjugate molecules.

J Haralambidis 1, L Duncan 1, K Angus 1, G W Tregear 1
PMCID: PMC333453  PMID: 2308843

Abstract

We have developed methods for the synthesis of peptide-oligodeoxyribonucleotide conjugate molecules in particular, and polyamide-oligonucleotide conjugates in general. Synthesis is carried out by a solid-phase procedure and involves the assembly of a polyamide on the solid support, conversion of the terminal amino group to a protected primary aliphatic hydroxy group by reaction with alpha, omega-hydroxycarboxylic acid derivatives, and finally oligonucleotide synthesis using phosphoramidite chemistry. The conjugate molecules can be used as DNA probes, with the polyamide component carrying one or more non-radioactive markers. These conjugates also have the potential to be used as anti-sense inhibitors of gene expression, with the peptide segment acting as a targeting moiety.

Full text

PDF
493

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agrawal S., Christodoulou C., Gait M. J. Efficient methods for attaching non-radioactive labels to the 5' ends of synthetic oligodeoxyribonucleotides. Nucleic Acids Res. 1986 Aug 11;14(15):6227–6245. doi: 10.1093/nar/14.15.6227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chollet A., Kawashima E. H. Biotin-labeled synthetic oligodeoxyribonucleotides: chemical synthesis and uses as hybridization probes. Nucleic Acids Res. 1985 Mar 11;13(5):1529–1541. doi: 10.1093/nar/13.5.1529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Connolly B. A., Rider P. Chemical synthesis of oligonucleotides containing a free sulphydryl group and subsequent attachment of thiol specific probes. Nucleic Acids Res. 1985 Jun 25;13(12):4485–4502. doi: 10.1093/nar/13.12.4485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Draper D. E. Attachment of reporter groups to specific, selected cytidine residues in RNA using a bisulfite-catalyzed transamination reaction. Nucleic Acids Res. 1984 Jan 25;12(2):989–1002. doi: 10.1093/nar/12.2.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Drinkwater C. C., Evans B. A., Richards R. I. Kallikreins, kinins and growth factor biosynthesis. Trends Biochem Sci. 1988 May;13(5):169–172. doi: 10.1016/0968-0004(88)90144-2. [DOI] [PubMed] [Google Scholar]
  6. Eadie J. S., Davidson D. S. Guanine modification during chemical DNA synthesis. Nucleic Acids Res. 1987 Oct 26;15(20):8333–8349. doi: 10.1093/nar/15.20.8333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Haralambidis J., Chai M., Tregear G. W. Preparation of base-modified nucleosides suitable for non-radioactive label attachment and their incorporation into synthetic oligodeoxyribonucleotides. Nucleic Acids Res. 1987 Jun 25;15(12):4857–4876. doi: 10.1093/nar/15.12.4857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Itakura K., Rossi J. J., Wallace R. B. Synthesis and use of synthetic oligonucleotides. Annu Rev Biochem. 1984;53:323–356. doi: 10.1146/annurev.bi.53.070184.001543. [DOI] [PubMed] [Google Scholar]
  9. Jablonski E., Moomaw E. W., Tullis R. H., Ruth J. L. Preparation of oligodeoxynucleotide-alkaline phosphatase conjugates and their use as hybridization probes. Nucleic Acids Res. 1986 Aug 11;14(15):6115–6128. doi: 10.1093/nar/14.15.6115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Li P., Medon P. P., Skingle D. C., Lanser J. A., Symons R. H. Enzyme-linked synthetic oligonucleotide probes: non-radioactive detection of enterotoxigenic Escherichia coli in faecal specimens. Nucleic Acids Res. 1987 Jul 10;15(13):5275–5287. doi: 10.1093/nar/15.13.5275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Penschow J. D., Haralambidis J., Aldred P., Tregear G. W., Coghlan J. P. Location of gene expression in CNS using hybridization histochemistry. Methods Enzymol. 1986;124:534–548. doi: 10.1016/0076-6879(86)24038-0. [DOI] [PubMed] [Google Scholar]
  12. Sarin V. K., Kent S. B., Tam J. P., Merrifield R. B. Quantitative monitoring of solid-phase peptide synthesis by the ninhydrin reaction. Anal Biochem. 1981 Oct;117(1):147–157. doi: 10.1016/0003-2697(81)90704-1. [DOI] [PubMed] [Google Scholar]
  13. Sproat B. S., Beijer B., Rider P., Neuner P. The synthesis of protected 5'-mercapto-2',5'-dideoxyribonucleoside-3'-O-phosphoramidites; uses of 5'-mercapto-oligodeoxyribonucleotides. Nucleic Acids Res. 1987 Jun 25;15(12):4837–4848. doi: 10.1093/nar/15.12.4837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sproat B. S., Beijer B., Rider P. The synthesis of protected 5'-amino-2',5'-dideoxyribonucleoside-3'-O-phosphoramidites; applications of 5'-amino-oligodeoxyribonucleotides. Nucleic Acids Res. 1987 Aug 11;15(15):6181–6196. doi: 10.1093/nar/15.15.6181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Urdea M. S., Warner B. D., Running J. A., Stempien M., Clyne J., Horn T. A comparison of non-radioisotopic hybridization assay methods using fluorescent, chemiluminescent and enzyme labeled synthetic oligodeoxyribonucleotide probes. Nucleic Acids Res. 1988 Jun 10;16(11):4937–4956. doi: 10.1093/nar/16.11.4937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wachter L., Jablonski J. A., Ramachandran K. L. A simple and efficient procedure for the synthesis of 5'-aminoalkyl oligodeoxynucleotides. Nucleic Acids Res. 1986 Oct 24;14(20):7985–7994. doi: 10.1093/nar/14.20.7985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Zuckermann R., Corey D., Schultz P. Efficient methods for attachment of thiol specific probes to the 3'-ends of synthetic oligodeoxyribonucleotides. Nucleic Acids Res. 1987 Jul 10;15(13):5305–5321. doi: 10.1093/nar/15.13.5305. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES