Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1991 Jan 11;19(1):11–15. doi: 10.1093/nar/19.1.11

Locating transcribed and non-transcribed rDNA spacer sequences within the nucleolus by in situ hybridization and immunoelectron microscopy.

M Thiry 1, L Thiry-Blaise 1
PMCID: PMC333528  PMID: 2011491

Abstract

Immunoelectron microscopy and in situ hybridization have been used to investigate the precise location of transcribed and non-transcribed rDNA spacer sequences. Whereas a 5'-external transcribed spacer sequence is predominantly visualized in the fibrillar centers of nucleoli, a non-transcribed spacer sequence is preferentially detected in the interstices, in close contact with the fibrillar centers and which interrupt the surrounding dense fibrillar component. Occasionally these two spacers are also observed in clumps of dense nucleolus-associated chromatin. These observations provide insights into the organization of ribosomal repeats within the nucleolus.

Full text

PDF
11

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachellerie J. P., Nicoloso M., Zalta J. P. Nucleolar chromatin in Chinese hamster ovary cells. Topographical distribution of ribosomal DNA sequences and isolation of ribosomal transcription complexes. Eur J Biochem. 1977 Sep 15;79(1):23–32. doi: 10.1111/j.1432-1033.1977.tb11779.x. [DOI] [PubMed] [Google Scholar]
  2. Bolla R. I., Braaten D. C., Shiomi Y., Hebert M. B., Schlessinger D. Localization of specific rDNA spacer sequences to the mouse L-cell nucleolar matrix. Mol Cell Biol. 1985 Jun;5(6):1287–1294. doi: 10.1128/mcb.5.6.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cory S., Adams J. M. A very large repeating unit of mouse DNA containing the 18S, 28S and 5.8S rRNA genes. Cell. 1977 Aug;11(4):795–805. doi: 10.1016/0092-8674(77)90292-6. [DOI] [PubMed] [Google Scholar]
  4. Derenzini M., Hernandez-Verdun D., Farabegoli F., Pession A., Novello F. Structure of ribosomal genes of mammalian cells in situ. Chromosoma. 1987;95(1):63–70. doi: 10.1007/BF00293843. [DOI] [PubMed] [Google Scholar]
  5. Fakan S. Structural support for RNA synthesis in the cell nucleus. Methods Achiev Exp Pathol. 1986;12:105–140. [PubMed] [Google Scholar]
  6. Goessens G. High resolution autoradiographic studies of ehrlich tumour cell nucleoli. Nucleolar labelling after [3H]actinomycin D binding to DNA or after [3H]TdR or [3H]uridine incorporation in nucleic acids. Exp Cell Res. 1976 Jun;100(1):88–94. doi: 10.1016/0014-4827(76)90330-x. [DOI] [PubMed] [Google Scholar]
  7. Goessens G. Nucleolar structure. Int Rev Cytol. 1984;87:107–158. doi: 10.1016/s0074-7696(08)62441-9. [DOI] [PubMed] [Google Scholar]
  8. Goessens G. Relations between fibrillar centres and nucleolus-associated chromatin in Ehrlich tumour cells. Cell Biol Int Rep. 1979 Jul;3(4):337–343. doi: 10.1016/s0309-1651(79)80004-1. [DOI] [PubMed] [Google Scholar]
  9. Greimers R., Deltour R. Organization of transcribed and nontranscribed chromatin in isolated nuclei of Zea mays root cells. Eur J Cell Biol. 1981 Feb;23(2):303–311. [PubMed] [Google Scholar]
  10. Gross D. S., Garrard W. T. Nuclease hypersensitive sites in chromatin. Annu Rev Biochem. 1988;57:159–197. doi: 10.1146/annurev.bi.57.070188.001111. [DOI] [PubMed] [Google Scholar]
  11. Grummt I., Gross H. J. Structural organization of mouse rDNA: comparison of transcribed and non-transcribed regions. Mol Gen Genet. 1980 Jan;177(2):223–229. doi: 10.1007/BF00267433. [DOI] [PubMed] [Google Scholar]
  12. Grummt I. Mapping of a mouse ribosomal DNA promoter by in vitro transcription. Nucleic Acids Res. 1981 Nov 25;9(22):6093–6102. doi: 10.1093/nar/9.22.6093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grummt I., Soellner C., Scholz I. Characterization of a cloned ribosomal fragment from mouse which contains the 18S coding region and adjacent spacer sequences. Nucleic Acids Res. 1979 Apr;6(4):1351–1369. doi: 10.1093/nar/6.4.1351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lepoint A., Bassleer R. Etude cytologique et cytochimique de cellules tumorales d'Ehrlich de la souris cultivées in vitro. C R Acad Sci Hebd Seances Acad Sci D. 1973 Jan 15;276(3):441–443. [PubMed] [Google Scholar]
  15. Long E. O., Dawid I. B. Repeated genes in eukaryotes. Annu Rev Biochem. 1980;49:727–764. doi: 10.1146/annurev.bi.49.070180.003455. [DOI] [PubMed] [Google Scholar]
  16. Puvion-Dutilleul F., Bachellerie J. P. Ribosomal transcriptional complexes in subnuclear fractions of Chinese hamster ovary cells after short-term actinomycin D treatment. J Ultrastruct Res. 1979 Feb;66(2):190–199. doi: 10.1016/s0022-5320(79)90134-5. [DOI] [PubMed] [Google Scholar]
  17. Reeder R. H., Wahn H. L., Botchan P., Hipskind R., Sollner-Webb B. Ribosomal genes and their proteins from Xenopus. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 2):1167–1177. doi: 10.1101/sqb.1978.042.01.117. [DOI] [PubMed] [Google Scholar]
  18. Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
  19. Roth J., Bendayan M., Carlemalm E., Villiger W., Garavito M. Enhancement of structural preservation and immunocytochemical staining in low temperature embedded pancreatic tissue. J Histochem Cytochem. 1981 May;29(5):663–671. doi: 10.1177/29.5.6166664. [DOI] [PubMed] [Google Scholar]
  20. Scheer U., Benavente R. Functional and dynamic aspects of the mammalian nucleolus. Bioessays. 1990 Jan;12(1):14–21. doi: 10.1002/bies.950120104. [DOI] [PubMed] [Google Scholar]
  21. Scheer U., Messner K., Hazan R., Raska I., Hansmann P., Falk H., Spiess E., Franke W. W. High sensitivity immunolocalization of double and single-stranded DNA by a monoclonal antibody. Eur J Cell Biol. 1987 Jun;43(3):358–371. [PubMed] [Google Scholar]
  22. Scheer U., Rose K. M. Localization of RNA polymerase I in interphase cells and mitotic chromosomes by light and electron microscopic immunocytochemistry. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1431–1435. doi: 10.1073/pnas.81.5.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Thiry M., Goessens G. Ultrastructural study of the relationships between the various nucleolar components in Ehrlich tumour and HEp-2 cell nucleoli after acetylation. Exp Cell Res. 1986 May;164(1):232–242. doi: 10.1016/0014-4827(86)90470-2. [DOI] [PubMed] [Google Scholar]
  24. Thiry M. Immunoelectron microscope localization of bromodeoxyuridine incorporated into DNA of Ehrlich tumor cell nucleoli. Exp Cell Res. 1988 Nov;179(1):204–213. doi: 10.1016/0014-4827(88)90359-x. [DOI] [PubMed] [Google Scholar]
  25. Thiry M., Scheer U., Goessens G. Localization of DNA within Ehrlich tumour cell nucleoli by immunoelectron microscopy. Biol Cell. 1988;63(1):27–34. [PubMed] [Google Scholar]
  26. Thiry M., Thiry-Blaise L. In situ hybridization at the electron microscope level: an improved method for precise localization of ribosomal DNA and RNA. Eur J Cell Biol. 1989 Oct;50(1):235–243. [PubMed] [Google Scholar]
  27. Tower J., Henderson S. L., Dougherty K. M., Wejksnora P. J., Sollner-Webb B. An RNA polymerase I promoter located in the CHO and mouse ribosomal DNA spacers: functional analysis and factor and sequence requirements. Mol Cell Biol. 1989 Apr;9(4):1513–1525. doi: 10.1128/mcb.9.4.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES