Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1991 Jan 11;19(1):77–83. doi: 10.1093/nar/19.1.77

DNA methylation as a regulatory mechanism in rat gamma-crystallin gene expression.

R Peek 1, R W Niessen 1, J G Schoenmakers 1, N H Lubsen 1
PMCID: PMC333536  PMID: 2011513

Abstract

We have investigated the methylation state of the rat gamma-crystallin genes in DNA from lens cells at different developmental stages as well as from kidney and heart cells. A clear correlation between the extent of demethylation of the promoter and 5' gene regions and the expression of these genes was observed. No change in the methylation state of the far upstream or 3' regions of the genes was seen. The demethylation of the promoter region was shown to occur during the differentiation from the lens epithelial to the lens fiber cell. The effect of cytosine methylation on gamma-crystallin promoter activity was tested by measuring gamma-crystallin promoter/chloramphenicol acetyltransferase fusion gene expression after in vitro primed repair synthesis of the promoter region in the presence of either dCTP or 5mdCTP. The hemimethylated promoter was no longer capable of promoting high CAT activity after introduction into lens-like cells. Taken together, our data suggest that DNA demethylation may be the determining step in the developmental stage-specific expression of the rat gamma-crystallin genes.

Full text

PDF
77

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ben-Hattar J., Jiricny J. Methylation of single CpG dinucleotides within a promoter element of the Herpes simplex virus tk gene reduces its transcription in vivo. Gene. 1988 May 30;65(2):219–227. doi: 10.1016/0378-1119(88)90458-1. [DOI] [PubMed] [Google Scholar]
  2. Chamberlain C. G., McAvoy J. W. Evidence that fibroblast growth factor promotes lens fibre differentiation. Curr Eye Res. 1987 Sep;6(9):1165–1169. doi: 10.3109/02713688709034890. [DOI] [PubMed] [Google Scholar]
  3. Creusot F., Christman J. K. Localization of DNA methyltransferase in the chromatin of Friend erythroleukemia cells. Nucleic Acids Res. 1981 Oct 24;9(20):5359–5381. doi: 10.1093/nar/9.20.5359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ehrlich M., Wang R. Y. 5-Methylcytosine in eukaryotic DNA. Science. 1981 Jun 19;212(4501):1350–1357. doi: 10.1126/science.6262918. [DOI] [PubMed] [Google Scholar]
  5. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  6. Gaido M. L., Strobl J. S. Inhibition of rat growth hormone promoter activity by site-specific DNA methylation. Biochim Biophys Acta. 1989 Jul 7;1008(2):234–242. doi: 10.1016/0167-4781(80)90014-7. [DOI] [PubMed] [Google Scholar]
  7. Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
  8. Harding C. V., Reddan J. R., Unakar N. J., Bagchi M. The control of cell division in the ocular lens. Int Rev Cytol. 1971;31:215–300. doi: 10.1016/s0074-7696(08)60060-1. [DOI] [PubMed] [Google Scholar]
  9. Jones R. E., DeFeo D., Piatigorsky J. Transcription and site-specific hypomethylation of the delta-crystallin genes in the embryonic chicken lens. J Biol Chem. 1981 Aug 10;256(15):8172–8176. [PubMed] [Google Scholar]
  10. Lok S., Stevens W., Breitman M. L., Tsui L. C. Multiple regulatory elements of the murine gamma 2-crystallin promoter. Nucleic Acids Res. 1989 May 11;17(9):3563–3582. doi: 10.1093/nar/17.9.3563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mandel J. L., Chambon P. DNA methylation: organ specific variations in the methylation pattern within and around ovalbumin and other chicken genes. Nucleic Acids Res. 1979 Dec 20;7(8):2081–2103. doi: 10.1093/nar/7.8.2081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mavilio F., Giampaolo A., Carè A., Migliaccio G., Calandrini M., Russo G., Pagliardi G. L., Mastroberardino G., Marinucci M., Peschle C. Molecular mechanisms of human hemoglobin switching: selective undermethylation and expression of globin genes in embryonic, fetal, and adult erythroblasts. Proc Natl Acad Sci U S A. 1983 Nov;80(22):6907–6911. doi: 10.1073/pnas.80.22.6907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McAvoy J. W. Cell division, cell elongation and distribution of alpha-, beta- and gamma-crystallins in the rat lens. J Embryol Exp Morphol. 1978 Apr;44:149–165. [PubMed] [Google Scholar]
  14. McGinnis W., Shermoen A. W., Heemskerk J., Beckendorf S. K. DNA sequence changes in an upstream DNase I-hypersensitive region are correlated with reduced gene expression. Proc Natl Acad Sci U S A. 1983 Feb;80(4):1063–1067. doi: 10.1073/pnas.80.4.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Murer-Orlando M., Paterson R. C., Lok S., Tsui L. C., Breitman M. L. Differential regulation of gamma-crystallin genes during mouse lens development. Dev Biol. 1987 Jan;119(1):260–267. doi: 10.1016/0012-1606(87)90227-2. [DOI] [PubMed] [Google Scholar]
  16. Ott M. O., Sperling L., Cassio D., Levilliers J., Sala-Trepat J., Weiss M. C. Undermethylation at the 5' end of the albumin gene is necessary but not sufficient for albumin production by rat hepatoma cells in culture. Cell. 1982 Oct;30(3):825–833. doi: 10.1016/0092-8674(82)90287-2. [DOI] [PubMed] [Google Scholar]
  17. Peek R., van der Logt P., Lubsen N. H., Schoenmakers J. G. Tissue- and species-specific promoter elements of rat gamma-crystallin genes. Nucleic Acids Res. 1990 Mar 11;18(5):1189–1197. doi: 10.1093/nar/18.5.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Richardson N. A., McAvoy J. W. Age-related changes in fibre differentiation of rat lens epithelial explants exposed to fibroblast growth factor. Exp Eye Res. 1990 Feb;50(2):203–211. doi: 10.1016/0014-4835(90)90232-j. [DOI] [PubMed] [Google Scholar]
  19. Salomon R., Kaye A. M. Methylation of mouse DNA in vivo: di- and tripyrimidine sequences containing 5-methylcytosine. Biochim Biophys Acta. 1970 Apr 15;204(2):340–351. [PubMed] [Google Scholar]
  20. Sullivan C. H., Norman J. T., Borrás T., Grainger R. M. Developmental regulation of hypomethylation of delta-crystallin genes in chicken embryo lens cells. Mol Cell Biol. 1989 Jul;9(7):3132–3135. doi: 10.1128/mcb.9.7.3132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Van Leen R. W., Breuer M. L., Lubsen N. H., Schoenmakers J. G. Developmental expression of crystallin genes: in situ hybridization reveals a differential localization of specific mRNAs. Dev Biol. 1987 Oct;123(2):338–345. doi: 10.1016/0012-1606(87)90392-7. [DOI] [PubMed] [Google Scholar]
  22. Weintraub H., Beug H., Groudine M., Graf T. Temperature-sensitive changes in the structure of globin chromatin in lines of red cell precursors transformed by ts-AEV. Cell. 1982 Apr;28(4):931–940. doi: 10.1016/0092-8674(82)90072-1. [DOI] [PubMed] [Google Scholar]
  23. Yisraeli J., Frank D., Razin A., Cedar H. Effect of in vitro DNA methylation on beta-globin gene expression. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4638–4642. doi: 10.1073/pnas.85.13.4638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. den Dunnen J. T., van Neck J. W., Cremers F. P., Lubsen N. H., Schoenmakers J. G. Nucleotide sequence of the rat gamma-crystallin gene region and comparison with an orthologous human region. Gene. 1989 May 30;78(2):201–213. doi: 10.1016/0378-1119(89)90223-0. [DOI] [PubMed] [Google Scholar]
  25. van Leen R. W., van Roozendaal K. E., Lubsen N. H., Schoenmakers J. G. Differential expression of crystallin genes during development of the rat eye lens. Dev Biol. 1987 Apr;120(2):457–464. doi: 10.1016/0012-1606(87)90249-1. [DOI] [PubMed] [Google Scholar]
  26. van der Ploeg L. H., Groffen J., Flavell R. A. A novel type of secondary modification of two CCGG residues in the human gamma delta beta-globin gene locus. Nucleic Acids Res. 1980 Oct 24;8(20):4563–4574. doi: 10.1093/nar/8.20.4563. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES