Abstract
HIV infection is widespread throughout the world and is especially prevalent in sub-Saharan Africa and Asia. Similarly, Plasmodium falciparum, the most common cause of severe malaria, affects large areas of sub-Saharan Africa, the Indian subcontinent, and Southeast Asia. Although initial studies suggested that HIV and malaria had independent impact upon patient outcomes, recent studies have indicated a more significant interaction. Clinical studies have shown that people infected with HIV have more frequent and severe episodes of malaria, and parameters of HIV disease progression worsen in individuals during acute malaria episodes. However, the effect of HIV on development of cerebral malaria, a manifestation of P. falciparum infection that is frequently fatal, has not been characterized. We review clinical and basic science studies pertaining to HIV and malaria coinfection and cerebral malaria in particular in order to highlight the likely role HIV plays in exacerbating cerebral malaria pathogenesis.
Keywords: HIV, malaria, cerebral malaria, coinfection
1 Introduction
Plasmodium falciparum is the most virulent of the malaria species that infect humans, and it is responsible for the majority of morbidity and mortality due to malaria infection. Worldwide, 1.2 billion people are at risk for malaria infection, resulting in 225 million infections and 781,000 deaths in 2010 [198]. The majority of these deaths are due to severe malarial anemia and cerebral malaria (CM) and occur in young children in sub-Saharan Africa, where one in every five childhood deaths is due to malaria [196]. 85% of the world’s malaria deaths occur in sub-Saharan Africa. Malaria disproportionately affects poor people with limited access to healthcare, contributing to the perpetuity of poverty in developing countries [197].
Both HIV and malaria have similar geographic distributions, disproportionately affecting people living in sub-Saharan Africa, the Indian subcontinent, and Southeast Asia. Each disease alone causes significant morbidity and mortality, and poses a major threat to public health in these regions. In light of their overlap in global distribution, there are presumed to be high rates of HIV and malaria coinfection. A review of publications from the late 1980’s and early 1990’s found no significant difference in incidence or severity of malaria infection between HIV-infected and -uninfected individuals [24]. Many of these were case series or cross-sectional analyses and suffered from selection bias [54]. However, more recent work suggests that the incidence of symptomatic malaria and the severity of illness are increased during coinfection with HIV.
Given the prevalence of both HIV and malaria, even a small effect of coinfection on the severity of clinical disease could have significant public health implications: a mathematical model of HIV and malaria dual infection suggests that the increase in parasitemia seen in HIV results in transmission of malaria to more people, fueling its spread across geographic areas. Additionally, the transient rise in HIV viral load during malaria episodes could result in spread of HIV to additional persons [1].
Areas of the world that are most affected by malaria also carry a heavy burden of HIV. There are 33 million people living with HIV worldwide, with 22.5 million cases in sub-Saharan Africa alone. This results in an estimated overall HIV prevalence of 5% in sub-Saharan Africa, with some countries reporting prevalence rates greater than 25%. While new HIV infections in adults and children have decreased since 2005, there were an estimated 2.5 million children living with HIV in 2007, nearly 90% of whom live in sub-Saharan Africa. It is estimated that 2.1 million deaths in 2007 were due to HIV, of which 1.6 million occurred in sub-Saharan Africa, making HIV/AIDS the number one cause of mortality in that region [176].
HIV infects and depletes CD4+ T lymphocytes and monocytes/macrophages, putting patients at risk for opportunistic infection and malignancy, the major causes of death due to HIV and AIDS. However, it also has effects on the systemic inflammatory response, causing activation and/or apoptosis in a variety of immune cells as well as elevated levels of proinflammatory cytokines and chemokines in lymph nodes and in the circulation. This inflammatory dysregulation may have important implications for malaria/HIV coinfection, as several pro-inflammatory cytokines have been implicated in the pathogenesis of cerebral malaria, one of the most severe forms of malaria infection.
2 Clinical presentations of malaria
Falciparum malaria has a spectrum of clinical presentations, ranging from asymptomatic parasitemia in people with immunity to severe malarial anemia, placental malaria, cerebral malaria, or multi-organ failure. Cerebral malaria (CM) is one of the most severe manifestations of Plasmodium falciparum infection, with an associated mortality rate of roughly 18% despite aggressive treatment [97]. The WHO clinical case definition of CM is peripheral P. falciparum parasitemia and unarousable coma (Blantyre coma score of 2 or less in children [120] or Glasgow coma score less than 9 in adults [171]) with no other known cause of coma [203]. The majority of childhood deaths due to CM occur in the first 24–48 hours of central nervous system (CNS) symptom onset. The exact mechanisms of CM are not understood, but it is thought CM and other end-organ damage is mediated through interactions between infected erythrocytes and host receptors on the blood vessel wall, resulting in adherence and sequestration of infected erythrocytes in post-capillary venules, obstruction of blood flow, and subsequent tissue damage [177]. Children and adults who survive cerebral malaria may suffer from long-term developmental and psychological deficits [12,182].
3 Central nervous system effects of HIV
The neurologic sequelae of HIV range from asymptomatic neurocognitive impairment to minor/moderate cognitive motor disorder and HIV-1 associated dementia. These are commonly referred to as HIV-associated neurocognitive disorders (HAND) and have been shown to affect 23–50% of those infected with HIV-1 [83,100]. These sequelae have not been evaluated in the context of coinfection with malaria. HIV enters the central nervous system (CNS) soon after peripheral infection resulting in CNS inflammation and damage.
Sub-acute AIDS encephalitis (SAE), now referred to as HIV-associated dementia, is characterized pathologically by cerebral atrophy, diffuse microglial proliferation and focal microglial nodules, multinucleated giant cells and foci of demyelination with associated gliosis [161]. Clinically, individuals with HIV-associated dementia have progressive psychomotor slowing, apathy, memory loss, and difficulty with concentration [137]. In a United States autopsy study from the pre-HAART (highly active anti-retroviral therapy) era, SAE was detected in 26% of adults with AIDS [95]. Despite only 26% having SAE pathology, HIV gp41 was detected by immunohistochemistry in 78% of brains, most frequently in the basal ganglia, brain stem, and deep cerebellar nuclei. Virtually all adult brains with SAE pathology had detectable HIV gp41 in ramified microglia, and even brains with no significant pathology frequently were HIV gp41 reactive. The intensity of HIV gp41 immunostaining and the number of labeled cells correlated only roughly with the severity/extent of encephalitis as determined by routine histology. Even adult subjects with minimal or no significant brain pathology frequently had detectable HIV gp41. Basal ganglia infarcts, often microscopic, were also documented.
CNS pathology of AIDS in children shares some features with the pathology seen in adults, such as microglial nodules and multinucleated giant cells, but differs with respect to other features. A key difference is that HIV infection in children affects a developing brain, rather than the mature CNS of adults. In the same autopsy study, SAE was detected in 48% of pediatric subjects, higher than that seen in adults (26%). However, HIV gp41 was detected in only 40% of pediatric brains compared with 78% in adults, and when it was detected it was less abundant [95]. In contrast to adults, the most common finding in children was calcification or mineralization of the basal ganglia and frontal white matter. Inflammatory lesions, a hallmark of adult HIV encephalitis, were more common in children older than 1 year [95]. No HIV gp41 was detected in children less than 2 years old, regardless of the histologic findings, while all 4 children over 42 months of age were gp41 immunoreactive [95].
Opportunistic infections of the CNS were uncommon in children [95]. Cerebral white matter was often poorly myelinated, either diffusely or focally in regions of inflammation, possibly related to the effects of HIV on a developing brain. The causes of these differences in pathology are unknown: infants and children may be exposed to lower viral burdens; they may clear the virus more effectively; or they may lack a mature immune system that promotes viral replication.
Neurologic disease in children with symptomatic HIV can manifest with acquired microcephaly, developmental delays, encephalopathy, pyramidal tract signs, and occasionally movement disorders. Clinical courses vary [41,199]. These differences may be related to age, with development of more progressive disease over time.
In an autopsy series of 14 children with symptomatic HIV who were classified based on their clinical course, brains of subjects with a progressive loss of previously acquired skills showed readily detectable HIV gp41 antigen with immunocytochemistry, whereas those with a plateau neurologic course who failed to acquire additional developmental skills showed little or no gp41 reactivity. All children in the plateau group were 3 years of age or younger, while those in the progressive group ranged up to 6.5 years of age. While gliosis in the deep cerebral white matter was seen in all 14 subjects, it was greater in children with a progressive course than in those who had a developmental plateau. Many also had involvement of the basal ganglia. Gliosis was also present in HIV-infected children with no detectable HIV gp41 by immunohistochemistry. One explanation for this is that virus is present, but at levels below the detection limit of immunocytochemistry. Alternatively, gliosis may be an indirect effect of systemic infection, resulting from damage to the blood-brain barrier by inflammatory cytokines or toxic metabolites, or it may indicate repression or clearance of HIV in the brain after virus-initiated CNS damage. Most of the comprehensive pathological studies of pediatric HIV CNS disease were performed prior to the development of more sensitive techniques such as quantitative polymerase chain reaction (PCR) and prior to the appreciation that malaria and HIV coinfection might have significant clinical consequences, thus there are many gaps in our knowledge about the effects of HIV in children.
4 HIV-1 subtypes and CNS effects
HIV-1 is genetically diverse and can be classified into several clades or subtypes based on genetic differences in the viral envelope. The prevalence of each clade varies geographically, with clade B being most common in North America and Europe and clades A, C and D predominating in sub-Saharan Africa. The genetic differences between subtypes seem to affect HIV disease progression. African individuals infected with clade D virus have a faster progression to AIDS and higher mortality rates than those infected with clade A virus [6,86,92,183], and in Canada, persons infected with clade B virus had faster rates of CD4+ T lymphocyte decline and progression to AIDS than did those infected with non-clade B virus [89].
There may also be differences in CNS pathophysiology between subtypes, but evidence is at times contradictory. While HIV subtype B-infected persons in the United States and HIV-infected persons in Uganda (where subtypes A and D predominate) had similar rates of HIV-associated dementia (27–31%), Ethiopian individuals infected with HIV subtype C had low rates of neurologic impairment, similar to HIV-uninfected controls [29,146,202]. HIV-infected subjects in the Ethiopian study were healthier than those from the United States and Uganda with a higher mean CD4+ T lymphocyte count, which may have affected the results.
In a study from India where clade C also predominates, there were no cases of HIV dementia, but high rates (60%) of mild to moderate cognitive impairment [71]. Subjects in the study also had higher CD4+ T cell counts than those in the United States and Uganda studies. More recently, Sacktor et al. found that HIV dementia is more common among subtype D-infected individuals than those infected with subtype A in Uganda [147]. The pathophysiology behind these differences is not known, but in vitro and animal studies suggest there are differences in the neurotoxicity of HIV Tat protein among subtypes [21,58,57,140].
5 Observational studies pertaining to HIV and malaria coinfection
The first studies to look for associations between HIV-1 and P. falciparum from the late 1980’s through the mid 1990’s found no significant increases in prevalence or severity of malaria in individuals infected with HIV. Nguyen-Dinh et al. found no association between P. falciparum parasitemia and HIV serostatus in pediatric subjects in Zaire [128], and other pediatric studies in Zaire, Malawi and Uganda observed no relation between HIV serostatus and malaria incidence or severity [68,121,169]. Similarly, several studies on adults found no increase in prevalence or severity of P. falciparum infection in HIV seropositive individuals [33,99,121,158].
One of the first areas in which HIV was shown to affect malaria disease severity was in pregnancy-associated malaria. In sub-Saharan Africa an estimated 1 million pregnancies are complicated by HIV/malaria coinfection each year [195]. During pregnancy, malaria causes anemia in the mother [16] and can result in placental malaria infection. In placental malaria, parasites sequester within placental tissue resulting in premature birth [7], intrauterine growth retardation (IUGR) [192], and perinatal mortality [7]. In areas of endemic malaria transmission, a woman’s risk for placental malaria decreases with each subsequent pregnancy [192], suggesting that protective immunity is acquired during pregnancy. However, Steketee et al. found in a prenatal malaria chemoprophylaxis trial in Malawi that multigravid (third or greater pregnancy) HIV seropositive women were more likely to have placental malaria than HIV uninfected women [163]. At enrollment, HIV seropositive women more frequently had peripheral parasitemia and had a higher mean parasitemia than did HIV uninfected women. Both primigravid (first pregnancy) and multigravid HIV seropositive women had higher geometric mean parasite densities, higher rates of placental malaria, and higher prevalence of umbilical cord blood malaria infection than HIV uninfected women at delivery [163].
Similar results were found in a separate prenatal malaria chemoprophylaxis trial in an area of endemic malaria transmission in Malawi [184]. A study of pregnant women in Kenya found the excess malaria risk in HIV-infected women ranges from 34.6% during the first pregnancy to 50.7% for third or more pregnancies [179]. HIV alters the typical gravidity-specific pattern of malaria in pregnancy, where risk for placental malaria decreases with each subsequent pregnancy, such that HIV-infected multigravid women have a similar risk of placental malaria as do primigravid HIV-infected women [179]. A cross-sectional study of pregnant women in Kenya looked at the association between placental malaria and cord blood parasitemia measured by real-time polymerase chain reaction (RT-PCR), and their association with HIV status [132]. HIV coinfection was associated with a significant increase in placental parasite density and with cord blood malaria prevalence. The higher the placental parasite density, the higher is the risk of IUGR and of preterm delivery [85]. Thus, HIV’s association with an increased risk of placental malaria and higher placental parasite density may potentially result in more cases of IUGR and preterm delivery. Additionally, because there were higher rates of cord blood infection in HIV seropositive mothers [132], there may be higher rates of congenital malaria infection in children born to HIV seropositive mothers.
In placental malaria, parasites sequester by binding to chondroitin sulfate A (CSA). CSA, a sulfated glycosaminoglycan, is expressed in the intervillous space in the placenta and co-localizes with P. falciparum-infected erythrocytes [123]. Both placental malaria and HIV infection are independently associated with anemia, low birth weight, prematurity and perinatal mortality [46,144]. HIV/malaria coinfected women appear to have more severe anemia and low birth weight infants than women singly infected with either HIV or malaria [139]. Women become increasingly resistant to placental malaria over subsequent pregnancies as they develop antibodies against the CSA-binding placental parasite forms [56,142]. HIV decreases the ability of pregnant women to acquire both IgG to variant surface antigens (VSA) expressed on the surface of parasitized erythrocytes and opsonizing antibodies to placental parasites [139], which may account for the alteration in parity-specific susceptibility to placental malaria. The amount of opsonizing antibodies also correlates with degree of immunosuppression among HIV-infected women, as women with fewer than 350 × 106 CD4+ T cells/L had lower levels of opsonizing antibodies than did women with greater than 350 × 106 CD4+ T cells/L.
Pregnancy-associated malaria also affects HIV-related outcomes in women. The relationship between baseline peripheral parasitemia and HIV-related outcomes was studied in Tanzania. In a randomized trial of micronutrient supplementation in HIV-infected pregnant women, peripheral parasitemia was non-linearly associated with HIV viral load at baseline and at times > 90 days after baseline [52]. Even women with low baseline parasitemia versus no parasitemia had higher viral loads at both time points. In women with CD4+ T cells counts ≥ 500 cells/μL, any amount of baseline parasitemia predicted an increased rate of AIDS-related deaths [52]. Although there was not strong evidence of an overall association between parasitemia and HIV progression or AIDS-related deaths, the rate of AIDS-related deaths was elevated in women with lower levels of immunosuppression (CD4 T cells > 500 cells/μL) with parasitemia, suggesting that malaria may be especially harmful to individuals with higher CD4+ T cell counts.
HIV infection in non-pregnant adults and children is also associated with more frequent and more severe malaria infection, both in unstable areas of transmission where people are thought to have no malaria immunity and in endemic transmission areas where inhabitants have partial immunity. A case-control study in a malaria-endemic region of Uganda found HIV-infected adults had more frequent clinical malaria, defined as acute fever with malaria parasitemia, than did individuals not infected with HIV [50]. A separate Ugandan cohort study found the incidence of symptomatic malaria in adults to be inversely related to participants’ CD4 T cell counts [55].
A significant association between HIV status and severe malaria in adults was found in a malaria-endemic region of Zambia, where HIV prevalence in the community was estimated to be as high as 30% [23]. In this case-control study, severe malaria was defined as peripheral parasitemia and fever with one or more of the following: Glasgow coma scale ≤ 10, seizures, jaundice, hypoglycemia, hyperparasitemia, renal impairment and cardio-respiratory distress. More than half of adult subjects with severe malaria presented with impaired consciousness, and 22% had convulsions. Ninety three percent (27 out of 29) of subjects with severe malaria were HIV seropositive, versus 15/29 (52%) of those with uncomplicated malaria and 13/29 (45%) with no malaria infection, suggesting that HIV results in more severe malaria disease. However, opportunistic infections such as cryptococcal meningitis or bacteremia can occur concurrently with malaria infection (especially in malaria-endemic areas with high infection rates) and would have gone undiagnosed in this study because blood cultures and cerebrospinal fluid analysis were not performed. A seminal study of fatal pediatric cerebral malaria cases performed by the Blantyre Malaria Project investigators in Malawi showed that up to a quarter of clinical cerebral malaria deaths were due to other causes on autopsy [170]. For that study both blood cultures and cerebrospinal fluid were obtained from comatose children presenting with malaria, and all children with another diagnosis causing coma prior to death were excluded. Thus, the Zambian subjects clinically determined to have severe malaria may have had other diagnoses confounding any imputed association between HIV seropositivity and severe malaria.
HIV-positive serostatus was associated with increased frequency of severe malaria in adults in an urban setting in India with unstable malaria transmission [90]. While estimated population prevalence of HIV infection was 1.8%, prevalence of HIV infection in adults presenting with severe malaria was 11.6% [90]. A South African study in an area of unstable malaria transmission of patients presenting with fever and peripheral parasitemia found that 47% of enrolled HIV-infected adults had severe or complicated malaria versus only 30% of HIV-uninfected adults (p = 0.003) [70]. HIV-infected subjects had a higher risk of death compared with HIV-uninfected subjects (20% vs. 3.8%; p < 0.001), and were more likely to present with coma (16% vs. 8%, p = 0.03) [70]. No cerebrospinal fluid analysis or blood cultures were performed but similar numbers of HIV seropositive and seronegative subjects received parenteral antibiotics, minimizing bias related to misdiagnosis.
In a separate South African study there was an inverse relationship between CD4+ T lymphocyte count and incidence of severe malaria in HIV-infected adults from areas of unstable malaria transmission. Individuals with CD4+ T lymphocyte counts < 200 cells/μL had significantly increased risk for severe malaria [32]. Most cases of severe malaria were due to anemia, renal failure and acidosis, rather than cerebral malaria. While this relationship between severe malaria and CD4+ T lymphocyte counts was not seen in study subjects from areas of stable malaria transmission who are thought to be semi-immune to malaria, the median CD4+ T lymphocyte count in malaria non-immune subjects was significantly lower than in semi-immune subjects (134 cells/μL versus 190 cells/μL; p = 0.007), possibly influencing the results.
HIV infection does not seem to have a significant impact on treatment response in uncomplicated malaria in individuals with low or moderate degrees of immunosuppression. In a randomized clinical trial of anti-malarial drug regimens in Uganda, HIV-infected adults were more susceptible to new malaria infections after malaria treatment than were HIV-uninfected individuals, but this was not due to recrudescent infection [87]. HIV testing was performed retrospectively and the degree of immunosuppression by clinical staging or CD4+ T lymphocyte counts was not performed. In a clinical trial of uncomplicated malaria in a malaria-endemic region of Zambia, treatment failure was not associated with HIV infection, although HIV-infected subjects with CD4+ T lymphocyte counts < 300 cells/μL were more likely to experience recrudescent malaria infection than HIV-infected subjects with CD4+ T lymphocyte counts > 300 cells/μL or HIV-uninfected subjects [180]. This latter finding suggests that severe immune suppression from HIV may affect the ability to clear malaria infection.
Severe malarial anemia (SMA) is one of the primary causes of mortality in children infected with P. falciparum. In a prospective study of children presenting with severe malaria in Malawi, HIV prevalence was significantly higher in children with SMA than in children with CM, and HIV-infected children with SMA had a higher prevalence of bacteremia than did HIV-uninfected children with SMA [17]. HIV and malaria coinfected children in an area of endemic malaria transmission in Kenya had significantly more malarial pigment-containing neutrophils and monocytes (a marker for severe disease), increased rates of SMA and almost a 10-fold greater mortality after 3 months than HIV-exposed (HIV-seropositive with no detectable virus born to HIV-infected mothers) or HIV-seronegative children [37]. While the risk for SMA was significantly lower in the HIV-exposed vs. HIV-infected children, rates of SMA were significantly higher in HIV-exposed vs. HIV-seronegative children. Another study based in Kenya found that children under the age of 2 who were HIV-exposed or HIV-infected had an increased prevalence of SMA than did HIV-uninfected children [130]. HIV-exposed children in this study had similar rates of SMA as HIV-infected children. These two studies suggest that there may be an effect of in utero HIV exposure on hematologic and/or immunologic development that remains clinically significant during early childhood.
In addition to malarial anemia, CM is a severe complication of infection with P. falciparum, with mortality rates of 15–20% despite aggressive medical treatment [22,120]. However, there is little data from observational studies pertaining to incidence or outcomes of CM in HIV coinfected adults or children. In South Africa, HIV-seropositive children older than 1 year in an area of unstable malaria transmission were more likely to have severe and complicated malaria with more episodes of coma, hypoglycemia, and longer length of stay in hospital than children who were not infected with HIV [69]. A recent pediatric case control study from Uganda found the rate of HIV seropositivity in children presenting with CM to be 9%, significantly higher than in children presenting with uncomplicated malaria (2.3%) or in children presenting for routine care with no malaria (2.5%), although overall numbers of enrolled HIV-infected children were low [79]. HIV-infected children with CM were more likely to have a higher parasite density than HIV negative children. In this study, children with CM were younger (81% were < 5 years old, vs. 68% and 63% in the uncomplicated malaria and no malaria groups, respectively). Because of the known association of CM with younger age, authors performed age-adjusted odds ratios to compare groups. The age-adjusted odds ratio for HIV-infected children to present with CM was 4.98 (95% CI 1.54–16.07, p = 0.003) [79].
HIV viremia increases during malaria infection, even with asymptomatic parasitemia [75,94]. In Malawian HIV-infected adults, asymptomatic parasitemia was associated with a 0.25 log increase in HIV viral load, and fever with parasite density > 2000/μL resulted in a 0.89 log increase [94]. Viral load in HIV-infected malaria-treated individuals was still significantly higher at 4 weeks compared to HIV-infected aparasitemic controls [75], but returned to baseline levels by 8–9 weeks after malaria treatment [94]. Given that HIV is more easily transmitted the higher the viral load [59, 138], malaria may contribute to HIV transmission in areas where coinfection is common.
In addition to the increase in HIV viral load, a drop in CD4+ T lymphocyte counts is seen during malaria episodes. In Zambia, symptomatic malaria was associated with a temporary drop in CD4+ T cell counts in both HIV-infected and -uninfected adults [180]. In Uganda, HIV-infected adults were followed for two years and monitored for malaria episodes. In this cohort, malaria infection was associated with a more rapid decline in CD4+ T cell counts over time [113]. Having 2 episodes of malaria in one year resulted in a mean decline of 84 CD4+ T cells/μL compared with having no malaria episode, regardless of baseline CD4+ T cell count. Thus, malaria may hasten HIV disease progression.
6 Immune response in malaria
Innate immunity is important for the initial control of blood stage malaria parasites. Innate immunity in malaria involves the production of inflammatory cytokines such as IFN-gamma and TNF-alpha and cells that are directly cytotoxic to blood stage parasites. NK cells are a subset of lymphocytes belonging to the innate immune system that do not express antigen-specific receptors. They are directly cytotoxic to tumor and infected cells, regulate other immune cells through cytokine production, and work in conjunction with antigen-presenting cells [47]. They are among the first lymphocytes to respond to Plasmodium falciparum with a strong IFN-gamma response and are important in controlling early parasitemia in murine malaria models [118].
Based on data from mouse studies, immune protection against the liver stages of malaria infection depends mainly on CD8+ T cells recognizing parasite peptides presented on hepatocytes. This causes IFN-gamma and IL-12 production which subsequently stimulates NK cells to produce more IFN-gamma, hindering the development of blood-stage infection [63]. NK cells are found in cerebral vessels prior to the onset of cerebral malaria symptoms in the murine model of cerebral malaria infection, and are later replaced by T lymphocytes [72]. Although they are considered part of the innate response to infection, NK cells are completely dependent on T cells for their IFN-gamma response and thus play a role in adaptive immunity to malaria [110]. HIV infection results in impaired cytolytic activity and dysfunctional cytokine production in NK cells [47], which may affect the innate immune response to malaria. As CD4+ T lymphocyte counts fall due to progressive HIV infection, there may also be a resulting impaired function of NK cells related to adaptive immunity.
Gamma delta T cells are a small subset of T cells that, like NK cells, also bridge the innate and adaptive immune response. They are an even more important source of IFN-gamma during early malaria infection than NK cells [44] and degranulate in response to blood stage parasites, controlling parasite density [36]. Gamma delta T cells are depleted during progression to AIDS through CCR5-mediated effects of HIV [101]. Individuals infected with HIV may thus have higher rates of malaria infection and increased parasite density, which may fuel the spread of malaria transmission.
Inflammatory (Th1) cytokines such as TNF-alpha and IFN-gamma are important in malaria pathogenesis and in cerebral malaria in particular, as they increase the surface expression of adhesion molecules on endothelial cells, promoting parasite attachment. Activated CD4+ T cells stimulate macrophages to produce TNF-alpha, which leads to cerebral malaria in mouse models [38].
In humans, clusters of cytokines may help discriminate between mild, severe, and cerebral malaria. High levels of IL-12, IL-5, and IL-6 discriminate severe forms of malaria from mild malaria. High IL-1beta levels are associated with cerebral malaria and high IL-12 and IFN-gamma levels are associated with severe malaria [136].
Cerebral malaria occurs early in disease, and is an outcome that reflects the early innate immune response to malaria. However, the frequency of severe malaria, including cerebral malaria, decreases with age and multiple exposures, indicating that the adaptive immune response is important for subsequent protection from the severe sequelae of malaria [5].
With repeated infection, partial immunity develops to symptomatic infection. Antibodies play an important role in this acquired immunity, as has been demonstrated in studies using the transfer of immune sera to non-immune children [111,145]. One reason for this is the development of antibodies to variant surface antigens produced by P. falciparum. Antibody response to Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), a large and polymorphic family of proteins expressed on the surface of infected red blood cells (iRBCs), increases in size and prevalence and becomes more complex with age in regions with high malaria transmission [8]. Immunity to blood-stage parasites is also controlled by CD4+ T cell responses that are independent of antibodies, but this may be due to downstream cytokines, nitric oxide, and/or gamma delta T cells [63].
While monocytes and macrophages play a major role in the innate host defense against malaria, they also mediate the development of parasite-specific cytotoxic lymphocytes and antibodies. Monocytes and macrophages are the main cells responsible for removing parasites from the circulation, phagocytosing iRBCs in the absence of malaria-specific antibodies, possibly via the surface receptor CD36 [164]. In addition, they present malaria antigens to CD4+ T cells, resulting in release of IFN-gamma and mediating the development of an antibody response [164]. The antibodies that develop and protect against blood stage infection do not inhibit parasite growth or red blood cell invasion in vitro unless monocytes are present [14,107]. Antibody-dependent phagocytosis of P. falciparum merozoites by monocytes after incubation with immune sera was observed in vitro [91]. Additionally, the growth rate of P. falciparum was significantly inhibited when IgG from immune subjects and purified monocytes from non-immune subjects were added to in vitro cultures [107]. This inhibition was not seen with IgG alone or in combination with platelets, lymphocytes, neutrophils, or splenic macrophages.
Independent of the aforementioned innate and adaptive immune responses to malaria, age-dependent physiologic factors play an important role in disease severity. Severe malarial anemia is more prevalent in children under the age of 2 years regardless of malaria transmission intensity, suggesting that physiologic factors rather than acquired immunity are responsible [141]. CM appears to be more prevalent in slightly older children even in areas of high transmission, which may also be due to age-related immune responses or as a result of immunologic priming from prior malaria infection [5].
Hemozoin (Hz) is a marker for malaria disease severity [78] as well as for CM and death from CM [108]. After schizont rupture, crude Hz is taken up by phagocytes, including macrophages, and it can persist in macrophages for several months. Hz causes significant functional impairment in macrophages, including defects in phagocytosis, a diminished oxidative burst, and decreased protein kinase C activity [115,152]. Uptake of Hz by monocytes and macrophages has been associated with increased cytokine secretion [133,156] and suppression of major histocompatibility complex (MHC) class II antigen presentation [152], which is important for development of an adequate helper T cell response. Expression of ICAM-1 and the integrin CD11c, which are important for cell adhesion and thus T cell stimulation, is also suppressed on the surface of Hz-containing monocytes [152]. In vitro, monocytes fed with Hz alone or with trophozoite-parasitized erythrocytes containing Hz display a long-acting oxidative burst, are unable to degrade Hz, and are unable to repeatedly phagocytose [153]. Hemozoin-containing macrophages in the bone marrow inhibit erythropoiesis, contributing to malarial anemia [160].
HIV-1 infected macrophages serve as a long term stable viral reservoir capable of disseminating virus to tissues [88]. While HIV-1 entry and infection of Hz-containing macrophages is not affected, these cells exhibit significantly diminished HIV-1 replication [42]. Thus, during malaria episodes macrophage viral reservoirs may decrease, but the cells persist and virus remains at low levels. Once the malaria infection is controlled or cleared and hemozoin removed, these macrophages can again be productive sources of HIV.
CCR5 is a chemokine receptor important in leukocyte trafficking. It is expressed on several types of leukocytes, on microglia, neurons and astrocytes in the brain, and in low levels on brain endothelial microvascular cells [11]. It is an important regulator of the inflammatory response to many infections involving the central nervous system [157,185,204], including the neurotropism of HIV [62]. In experimental cerebral malaria, CCR5 mRNA is highly upregulated in brains of mice infected with P. berghei ANKA [31,117] and CCR5-deficient mice are less susceptible to the development of cerebral malaria [9]. Additionally, CCR5 expression is increased on intervillous maternal and fetal villous macrophages during placental malaria infection [172]. Because CCR5 facilitates the spread of HIV-1 from cell to cell, the increase in CCR5 seen in both cerebral and placental malaria may increase HIV reservoirs in the brain and placenta. This may in turn facilitate development of HIV-associated neurocognitive disorders (HAND) and increase the risk for mother-to-child transmission of HIV-1. Thus far, clinical studies have not shown a significantly increased risk of mother-to-child transmission of HIV due to placental malaria, and no clinical studies have examined rates of neurocognitive disorders in HIV-infected survivors of cerebral malaria.
7 Immune response to HIV
As with malaria infection, inflammatory cytokines play an important role both in control and pathogenesis of HIV infection. During infection, viral particles are taken up by antigen presenting cells, which are then recognized by CD4+ T cells, causing activation and release of IL-2 and IFN-gamma. These inflammatory cytokines in turn stimulate CD8+ T cells, which control viremia. It is possible that this inflammatory response seen in HIV may compound the effects of adherence and sequestration seen in malaria, by also upregulating adhesion molecules on endothelial cells [60]. Immature dendritic cells are one of the first cell types encountered by HIV in the mucosa during sexual transmission, and they play an important role in transmitting HIV to CD4+ T cells [134]. Once immature dendritic cells encounter HIV, they develop into mature dendritic cells that then stimulate naïve T cells. A subset of mature dendritic cells induce a Th1 response from naïve T cells and show a markedly increased ability to mediate HIV-1 transmission to T cells, which correlates with increased surface expression of ICAM-1 on this mature dendritic cell subset [148].
During malaria infection, iRBCs bind to dendritic cells via CD36. Adherent iRBCs impair the maturation of dendritic cells, and reduce their ability to present antigen and activate T cells [177]. Additionally, differentiation and maturation of hemozoin (Hz)-loaded monocytes to dendritic cells is severely impaired, indicated by decreased expression of MHC class II and co-stimulatory surface markers [159].
Dendritic cells that develop from Hz-containing monocytes display an intermediate maturation phenotype, compared with immature or fully mature dendritic cells. These semi-mature dendritic cells have a lower surface expression of CCR5 than immature dendritic cells and are less permissive to virus infection. However, these cells exhibit an enhanced transfer of HIV-1 to CD4+ T cells and HIV-1 replication in CD4+ T cells is promoted by contact with these semi-mature, Hz-containing dendritic cells [43]. There does not appear to be a direct effect of Hz on CD4+ T cells [42].
Dendritic cells also present viral antigens to CD8+ T cells [109], and thus they play an important role in the induction and maintenance of cellular anti-HIV immunity. HIV-exposed dendritic cells also induce apoptosis in CD4+ T cells [103], which may contribute to dysfunction and decreases in CD4+ T cells in HIV-infected individuals. Malaria infection impairs human dendritic cell function in vitro [178] and dendritic cells from malaria-infected mice have impaired antigen-presenting activity [200], possibly affecting both cell- and antibody-mediated immunity to HIV.
CD8+ and CD4+ T cells are not stimulated as effectively after infection with HIV-1, making individuals with HIV more susceptible to most viruses, including HIV [143]. The CD8+ T cell population is expanded in children with HIV [40], as is the activated CD8+ T cell subset [13]. HIV-specific CD8+ T cells are crucial for the development of a protective response against HIV. CD8+ T cells require antigen presentation by dendritic cells in order to differentiate into effector cells [84], where they then have the ability to recognize viral peptides on the surface of infected cells and lyse them. Activated CD8+ T cells may inhibit CD4+ lymphocyte proliferation [40] and in experimental CM they sequester in the brain microvasculature along with other T cells, neutrophils and macrophages [10]. Lethal experimental CM is dependent on these activated CD8+ T cells, which are parasite-specific cytotoxic effector cells [106].
Regulatory T cells (CD4+CD25+FOXP3+), a T cell subset with constitutive immunosuppressive activity, is upregulated during HIV infection. These cells suppress CD4 T-cell proliferation in response to recall antigens and HIV proteins [194]. In human malaria infection, their upregulation correlates with increased TGF-beta production (a suppressive cytokine) and more rapid parasite growth [187]. Thus, HIV-induced regulatory T cell expansion could lead to an increase in parasite density during malaria infection.
Additionally, as HIV progresses clinically to AIDS there are effects on both innate and acquired immunity, with progressive loss of T cell responses to common recall antigens [28]. This may in part account for the increased rates of symptomatic malaria seen in cohort studies. HIV-1 has both direct and indirect effects on B cells. HIV directly causes B cell proliferation and polyclonal immunoglobulin secretion [150]. HIV gp120 impairs CD4+ T cells’ ability to help B cells, indirectly causing decreased B cell proliferation, polyclonal IgG secretion, and decreased antigen-specific IgG secretion [26]. A major effect of this B cell dysfunction is a decline in antibody class switching and subsequent increased susceptibility to bacterial infections, as is evident by the increased susceptibility to pneumococcal [74] and cryptococcal [82] infections in people with HIV, which are dependent on adequate antibody responses. Since clearance of erythrocytic forms of Plasmodium is thought to be dependent on antibody formation, HIV could impact on all aspects of the immune response to malaria.
HIV infection leads to reduced memory and naïve resting B cell populations, which can result in increases in other infections and decreased response to vaccines [104]. Malaria infection itself is also a risk factor for bacterial infection [154], and HIV is associated with an increased risk of bacterial infection during malaria episodes in children [17,154]. HIV-infected adults receiving antiretrovirals have normal levels of B cells overall but have a decreased memory B cell subset despite treatment, suggesting long-term impairment in the ability to mount an antibody response against coinfections [104].
8 Pathogenesis of cerebral malaria
There are several proposed mechanisms of disease pathophysiology in CM. These mechanisms remain controversial, but it is agreed that parasite sequestration in the brain microvasculature is critical.
One proposed mechanism focuses on the physical consequences of accumulating infected erythrocytes in the brain microvasculature, causing a blockage in circulation of blood and oxygen with subsequent ischemia to brain tissue. In support of this, autopsy studies of children and adults dying from CM have found brain vessels filled with parasitized erythrocytes, sometimes accompanied by thrombosed or ruptured capillaries with surrounding necrosis and hemorrhage [45,162,170]. Others focus on how the host inflammatory response contributes to disease. Pro-inflammatory cytokines such as TNF-alpha released by cells of the immune system can activate the endothelium, increasing expression of surface adhesion molecules that contribute to sequestration of infected erythrocytes and adhesion of platelets and mononuclear cells. Quantitative PCR of brain tissue obtained at autopsy has shown an increase in TNF-alpha mRNA in children dying with CM [19], and adults with CM have widespread endothelial activation and express high levels of the adhesion molecule ICAM-1 along the brain microvasculature [175].
Autopsy studies of children dying of cerebral malaria suggest differences in the pathophysiology of disease compared with adults. In children there is evidence of an inflammatory response, with leukocytes and platelets within the cerebral microvasculature and an increase in cerebral vascular permeability [45,66]. In adults, inflammatory cells are seen much less frequently within the cerebral microvasculature or in the perivascular space [175], and evidence for permeability of the blood-brain barrier is inconsistent [203]. The mechanisms of inflammation and of sequestration in the brain microvasculature are not mutually exclusive, but how significantly each plays a role and how much they overlap is still a matter of debate.
While coma precedes death from cerebral malaria, the exact mechanism of death is unknown. Cerebral edema is often noted in and may be important in disease pathophysiology, but does not seem to be related to coma severity or mortality [119]. CT imaging of 3 Malawian children with retinopathy-confirmed cerebral malaria and coma was significant for edema and obstructive hydrocephalus [135]. However, imaging studies on 7 Kenyan children with cerebral malaria showed no evidence of hydrocephalus [127]. In 26 Kenyan children with cerebral malaria, all had elevated opening pressure of cerebrospinal fluid on lumbar puncture [126]. Direct intracranial pressure monitoring of 23 Kenyan children with calculated cerebral perfusion pressure showed elevated intracranial pressure in all subjects, some with severely elevated intracranial hypertension (> 40 mm Hg) and decreased cerebral perfusion pressure (< 40 mm Hg) [125]. Mannitol controlled intracranial pressure in children with intermediate levels of intracranial hypertension (20–40 mm Hg) but did not stabilize pressure in children with severe intracranial hypertension or decrease mortality [124] and mannitol was associated with a higher risk of mortality in a trial of adults with cerebral malaria and elevated intracranial pressure [119]. Intravenous steroids as an adjunctive measure to decrease brain edema also did not reduce the incidence of death or degree of morbidity in patients with cerebral malaria [76,189].
9 Experimental cerebral malaria
Plasmodium berghei ANKA infection in susceptible strains of mice (C57BL/6 and CBA) produces a clinical syndrome similar to human CM. There is considerable controversy as to how faithfully this rodent experimental CM model mimics human CM. Mice consistently develop neurologic signs and symptoms, such as partial paralysis, seizures and coma, with relatively low parasitemia on day 6–9 post-infection, and succumb within 24 hours of neurologic symptom onset [73]. These mice have parasites and mononuclear cells containing phagocytosed parasites in the brain microvasculature, with clogging and rupture of vessels. The majority of these mononuclear cells are CD8+, and to a lesser extent, CD4+ T lymphocytes [72,117]. The endothelium from mice with CM expresses the adhesion molecule ICAM-1, as well as the pro-inflammatory cytokine TNF-alpha [73].
An inflammatory, or Th1-skewed immune response, is seen in both experimental CM and in human disease. In experimental CM, IFN-gamma plays an important role in cerebral sequestration pathology [3,186]. In human disease, CD4+ T cells from clinically immune individuals produce little IFN-gamma in response to malaria antigen, whereas peripheral blood mononuclear cells from non-immune individuals exhibit a Th1-skewed immune response with high levels of IFN-gamma [27], potentially upregulating adhesion molecules on endothelial cells leading to sequestration and CM.
CD4+ T cells were initially found to be critical to the development of CM in mice. CBA mice infected with P. berghei ANKA that were depleted of CD4+ T cells prior to infection did not develop neurologic symptoms of CM, but did eventually die with severe anemia and high parasitemia [67]. More recently it has been found that while CD4+ T cell depletion early in infection prevents CM, when CD4+ T cells are depleted later in infection and prior to neurologic symptom onset there is no effect on CM development [10]. Development of experimental CM was prevented when mice were depleted of CD8+ T cells regardless of whether it was early or late in infection [10], suggesting that CD8+ T lymphocytes are the effector cells for experimental CM.
TNF-alpha is an important mediator of experimental CM. CBA mice with CM after P. berghei ANKA infection have elevated serum TNF-alpha, whereas mice without CM do not [64]. IFN-gamma, which is released by T cells and activates macrophages, also mediates experimental CM. When CBA mice infected with P. berghei ANKA were given neutralizing antibody to IFN-gamma, TNF-alpha levels did not rise and incidence of CM decreased [65].
Cytokines, and in particular TNF-alpha, play an important role in some of the pathologic changes seen in human CM. TNF-alpha is found in higher levels in plasma in children with CM than in those with mild disease [96] and brain tissue from fatal CM cases contains both TNF-alpha and IL-1beta mRNA [19]. Additionally, serum TNF-alpha levels are significantly higher in HIV-infected individuals than in individuals without HIV [39]. It is plausible that the higher levels of inflammatory cytokines seen during HIV infection may predispose to the development of CM. While administration of TNF-blocking antibodies prevents development of cerebral malaria in mice [64], it had no effect on mortality in a pediatric clinical trial and was associated with a significant increase in neurologic sequelae [181].
Interferon-gamma-inducible protein (IP-10/CXCL10) is a potent chemoattractant that is stimulated by IFN-gamma and is an important component of the inflammatory response both in experimental CM and in HIV-associated neurocognitive disorders. It is consistently induced in HIV-infected microglia [166], attracting memory T lymphocytes into the central nervous system [93] and stimulating HIV-1 replication in monocyte-derived macrophages and lymphocytes [98]. Microglial nodules seen in HIV encephalitis produce high levels of insulin-like growth factor receptor 2 (IGF2R), which is involved in intracellular HIV replication. When IGF2R expression is blocked by transfection with IGF2R siRNA, HIV production in microglia is decreased and IP-10 production is decreased [165].
In experimental CM, neutralization of IP-10 and genetic deletion of IP-10 reduced peripheral parasitemia, reduced cerebral intravascular inflammation and protected P. berghei ANKA-infected mice from death. This was associated with retention and expansion of parasite-specific T cells in the spleens of infected mice, possibly because these T cells do not migrate to the brain in response to IP-10 [129]. Elevated IP-10 in serum and cerebrospinal fluid has also been identified as an independent predictor for human CM mortality, strengthening the argument that it has a major role in CM immunopathology [4,80]. Immune activation in the brain due to HIV results in increased expression of IFN-gamma and subsequently IP-10, possibly contributing to CM pathogenesis. In experimental and in human CM, microglia generally appear activated, with retracted, stout processes and rounded, enlarged cell bodies [77]. Autopsy studies of adults with CM have shown that microglial activation is widespread in both grey and white matter, and not limited to vessels containing sequestered parasites or to areas of hemorrhage [149]. However, activated microglia also accumulate within and surrounding ring hemorrhages and in the perivascular space of vessels containing sequestered parasitized erythrocytes [81].
10 Sequestration
There have been many molecules and cell surface receptors implicated in the intravascular sequestration associated with severe falciparum infection, both on endothelial cells and on cells circulating within the vasculature. Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP-1) is a highly variant, malaria strain-specific protein expressed on iRBCs. It mediates iRBC adhesion to several endothelial receptors. When PfEMP1 binds to endothelial ICAM-1, it increases junctional permeability of the blood-brain barrier and suppresses some aspects of dendritic cell and macrophage activation. PfEMP1 on iRBCs has also been shown to adhere to endothelial cells via CD36, chondroitin sulfate A (CSA), thrombospondin, E selectin, Vascular Cell Adhesion Protein 1 (VCAM-1) and the pan-endothelial marker PECAM-1/CD31 [2,175]. Widespread endothelial activation occurs [175].
CD36, a class II scavenger receptor, was the first receptor involved in adherence to be identified. Expression of CD36 on cell surfaces correlates with the ability to act as a target for cytoadherent iRBCs and likely is the major mechanism of cytoadherence outside the brain. However, it is unclear if CD36 plays a central role in CM sequestration [203] because sequestration occurs even when very low levels of CD36 are expressed within the brain [175]. Franke-Fayard et al. infected CD36 knockout mice with transgenic luciferase-expressing Plasmodium berghei parasites and found that while CD36 is the major receptor for P. berghei sequestration, cerebral complications still occurred in the absence of CD36-mediated brain sequestration [53]. The experimental mouse model of CM has limitations pertaining to the study of sequestration, as P. berghei ANKA-iRBCs do not express knobs on the cell surface as do P. falciparum-iRBCs and the major sequestered cell type in the mouse model is leukocytes, rather than iRBCs.
The role of CD36 in iRBC adherence is of particular interest when one considers HIV/malaria coinfection, as CD36 expression on circulating monocytes is significantly higher in HIV-1 infected individuals compared with healthy controls [114]. This increase in CD36 expression on monocytes has been linked to higher rates of atherosclerosis with HIV [15], but it may also contribute to the inflammatory component of malaria sequestration.
CD36 is also expressed on platelets, which play an important role in CM. Sequestration of parasites within brain vessels is often associated with fibrin-platelet thrombi [45], and platelets accumulate in the microvasculature during pediatric CM even without thrombosis [66]. Platelets have been shown to be essential to the development of experimental CM due to P. berghei ANKA infection [167]. In vitro, platelets bind to iRBCs and act as a bridge between iRBCs and human brain endothelial cells, facilitating binding [131,191]. Additionally, platelets are directly cytotoxic to activated human brain endothelial cells in vitro and this effect is amplified by iRBCs, causing increased permeability and endothelial cell death [190].
Platelet/endothelial adhesion molecule 1 (PECAM-1 or CD31) is a glycopeptide expressed only on endothelial cells and intravascular cells such as platelets and monocytes. P. falciparum iRBCs adhere to PECAM-1 on endothelial cells via PfEMP1 [25,174]. IFN-gamma increases the binding of iRBCs to endothelial cells via PECAM-1, possibly through redistribution of PECAM-1 from endothelial junctions to the cell surface [174]. During immune surveillance, monocytes transmigrate from the vasculature through the blood-brain barrier into brain tissue via PECAM-1 expressed at endothelial cell junctions [122]. Sera and brain tissue from individuals with HIV encephalitis have elevated levels of soluble cleaved PECAM-1, suggesting that PECAM-1 interactions between endothelial cells and between endothelial cells and monocytes (and possibly between endothelial cells and P. falciparum-iRBCs) are altered in HIV infection [48], contributing to changes in blood-brain barrier permeability and enhanced trafficking of HIV-infected monocytes into the brain.
The pro-inflammatory environment that occurs with CM is associated with the release of small fragments of plasma membrane called microparticles. Initially, elevated plasma levels of microparticles from endothelial cells were found in children during the acute phase of CM [35]. More recently, microparticles shed from activated platelets have been found to bind directly to iRBCs. This adherence is dependent on PfEMP1 variants expressed on the surface of iRBCs binding to CD36 and PECAM-1 present in platelet microparticles [49]. This binding of platelet microparticles to iRBCs increases iRBC cytoadherence to brain microvascular endothelial cells in vitro. Additionally, platelet microparticles are taken up by brain microvascular endothelial cells, causing the endothelial cells to express PECAM-1 and CD36 on cell membranes [49], contributing to the sequestration that is a hallmark of CM. Sequestration may be further enhanced during HIV coinfection via platelet microparticles. HIV-1 Trans-activating factor (Tat) directly interacts with platelets, causing activation and release of platelet microparticles [188].
Expression of Intercellular Adhesion Molecule 1 (ICAM-1) on endothelial cells is upregulated during systemic and local inflammation. Immunohistochemical studies indicate significant co-localization of sequestered parasites in the brain with vascular expression of ICAM-1 [175]. ICAM-1 expression is more widespread and evenly distributed compared with the focal, increased expression of the endothelial surface molecules E-selectin and VCAM-1, both of which are expressed more on medium to large size vessels. E-selectin and VCAM-1 are also associated with sequestered parasites, suggesting that these molecules may also act as sequestration receptors. However, they may not play major roles in sequestration given their overall low levels in the brain vasculature. Because ICAM-1 is widely expressed in brain microvasculature affected by sequestration, it is more likely to be the major molecule responsible for parasite adherence. As with PECAM-1, the soluble forms of ICAM-1 and VCAM-1 are systemically increased during HIV infection [201], potentially making the intravascular environment more prone to sequestration during malaria infection.
Nitric oxide (NO) is a free radical and an important cell signaling molecule that may be protective against severe malarial disease. NO reduces endothelial expression of adhesion molecules like ICAM-1 and VCAM-1 and reduces adherence of iRBCs to endothelial cells [193]. Both NO and the amino acid arginine (the substrate for nitric oxide synthase) are low during symptomatic malaria infection [193], while plasma arginase, an enzyme that converts arginine to ornithine and urea, is elevated in severe malaria. This suggests that less NO is produced, leading to a decrease in vascular dilatation and upregulation of endothelial activation and adhesion molecules [116]. In HIV-positive individuals, increased level of arginase activity correlates with disease severity and HIV viral load [30], suggesting that advanced HIV disease may contribute to sequestration through the nitric oxide pathway.
11 Effects of malaria on the endothelial and BBB during CM
Cerebral malaria is a major cause of death due to P. falciparum in children under the age of five. Characterized by coma and/or seizures, it is associated with sequestration of parasitized red blood cells in the brain microvasculature. Brain edema and elevated intracranial pressure are seen, and an ongoing study in Malawi is examining the correlation of MRI changes with the clinical presentation of children with CM [155].
Post-mortem brain samples from children who have died from cerebral malaria show activation of endothelial cells (with upregulation of ICAM-1) and macrophages (with increased macrophage scavenger receptor and sialoadhesin), and disruption of endothelial intercellular junctional proteins [zona occludens 1 (ZO-1), occludin and vinculin] in vessels containing sequestered parasitized red blood cells [18]. While no leakage of plasma proteins such as fibrinogen into the brain parenchyma was seen, pre-mortem cerebrospinal fluid albumin levels were elevated and more recent analysis of pediatric brain tissue has revealed leakage of fibrinogen at sites of parasite sequestration, ring hemorrhages, and vessel thrombosis [45]. Although BBB permeability does appear to be altered during cerebral malaria, disruption of the BBB was also seen in children who died from non-malarial causes, so further studies are needed to determine whether BBB changes are specifically linked to sequestered parasites.
In vitro studies have supported some of these findings. Gillrie et al. showed that parasite sonicates but not intact malaria-infected red blood cells disrupt the endothelial (dermal and pulmonary, not brain) barrier, revealed by discontinuous immunofluorescent staining of endothelial junction proteins, formation of inter-endothelial gaps in monolayers, and loss in total protein content of the tight junction protein claudin 5 and redistribution of ZO-1 [61].
In normal conditions, tightly packed endothelial cells, basement membrane and astrocytes that make up the BBB maintain its functional integrity with help from pericytes, perivascular macrophages and neurons. P. falciparum can disrupt this integrity, which is thought to contribute to the mortality associated with CM [34]. The major parasite ligand for adhesion is P. falciparum erythrocyte membrane protein (PfEMP-1) mediated iRBC adhesion to ICAM-1, which increases junctional permeability of the BBB and partially suppresses activation of dendritic cells and macrophages [2, 112,151].
Additionally, it appears that disruption of the blood-brain barrier may be due to specific features of P. falciparum isolates [168]. Human umbilical vascular endothelial cells (HUVEC) cultured with malaria isolated from patients with uncomplicated disease had increased mRNA levels of occludin, vinculin and ZO-1. Those cultured with samples from patients with severe malaria had no change in mRNA levels, and HUVECs cultured with P. falciparum from patients with cerebral malaria had decreased mRNA levels of occludin, vinculin and ZO-1, suggesting decreased production of tight junction proteins as a cause of cerebral malaria.
Not only are endothelial junction proteins affected, but so are the endothelial cells themselves. Endothelial cells produce tissue factor, which is important in thrombin formation, when cultured with P. falciparum, and brain endothelial cells from patients dying of CM and from those with malaria who died of other causes also showed increased levels of tissue factor [51]. Mature forms of blood stage malaria parasites induce expression of tissue factor by endothelial cells in vitro, and they may facilitate blood coagulation as well.
Endothelial cells upregulate adhesion molecules in response to falciparum malaria. In P. falciparum isolates from patients with complicated malaria, binding of iRBCs to human lung microvascular endothelial cells was observed and was primarily mediated through ICAM-1 and chondroitin sulfate (CSA) [173]. Mouse models of cerebral malaria have supported this role of ICAM-1. ICAM-1-deficient C57BL/6 mice infected with P. berghei ANKA were protected from mortality due to CM compared with C57BL/6 controls [102]. Additionally, lack of TNF receptor 2 conferred resistance to cerebral malaria in mice, which is important as TNF upregulates ICAM-1 in brain microvascular endothelial cells [105]. Despite the breakdown in tight junctions and adherence of iRBCs to the blood-brain barrier, iRBCs do not escape the vasculature and invade the brain parenchyma.
12 Effects of HIV on the blood-brain barrier
Unlike malaria, HIV is known to infect the brain parenchyma, leading to HIV-associated neurocognitive disorders such as dementia. HIV is thought to enter the brain through the regulated transmigration of HIV-infected mononuclear cells across the BBB, mediated by surface receptors on endothelial cells such as ICAM-1 [20]. Once across the barrier, HIV-infected cells recruit microglia and astrocytes allowing for subsequent infection of these cells and spread of HIV within the CNS. HIV may infect astrocytes at low levels, and it can activate endothelial cells, but it does not infect endothelial cells. As HIV replicates within the CNS, even at low levels, these cells produce inflammatory mediators, including the chemokine CCL2/MCP-1 [20], which can then activate endothelial cells to upregulate surface adhesion molecules.
13 Conclusions
While there have not been extensive clinical studies documenting the effects of HIV coinfection on severe malaria—including cerebral malaria—outcomes, there is growing experimental evidence indicating significant potential for exacerbation of immunologic and physiologic effects of both HIV and malaria. These in vitro findings highlight the need for more in-depth and prospective studies of individuals with HIV and severe malaria. The inflammatory immune response in the brain due to HIV leads to activation of endothelial cells and breakdown of the blood-brain barrier, potentially increasing susceptibility to and severity of cerebral malaria. Additionally, the dysregulated immune response to pathogens due to HIV infection likely impairs the body’s ability to clear malaria infection, leading to high parasitemia and severe anemia. There may also be effects of malaria on HIV-associated neurocognitive decline and malaria may affect long term HIV disease progression, although there is little published on either of these subjects. Future studies of children and adults presenting with cerebral malaria should include HIV testing and staging, and surviving subjects should be followed after discharge to monitor neurocognitive function and HIV progression. If severe malaria does hasten immunologic decline or neurocognitive impairment from HIV, it may be identified as clinical criteria for advanced HIV disease and thus an indication for antiretroviral treatment. HIV and malaria coinfection should be a significant public health and economic concern in sub-Saharan African and Asia, but until more is known of the long term consequences of coinfection there are insufficient data to guide management and improve outcomes in individuals with HIV and malaria coinfection.
Acknowledgments
Sarah Hochman was supported by the Geographic Medicine and Emerging Infections Training Grant NIAID T32 AI046985 awarded to the Albert Einstein College of Medicine and NIMH K08MH08948. Kami Kim was supported by R01AI087625 and RC4AI092801. We acknowledge the support of a pilot grant from the Einstein Montefiore CFAR, which is supported by NIAID 5P30AI051519.
References
- 1.Abu-Raddad LJ, Patnaik P, Kublin JG. Dual infection with HIV and malaria fuels the spread of both diseases in sub-Saharan Africa. Science. 2006;314:1603–1606. doi: 10.1126/science.1132338. [DOI] [PubMed] [Google Scholar]
- 2.Adams S, Brown H, Turner G. Breaking down the blood-brain barrier: signaling a path to cerebral malaria? Trends Parasitol. 2002;18:360–366. doi: 10.1016/s1471-4922(02)02353-x. [DOI] [PubMed] [Google Scholar]
- 3.Amante FH, Haque A, Stanley AC, de Rivera LF, Randall LM, Wilson YA, et al. Immune-mediated mechanisms of parasite tissue sequestration during experimental cerebral malaria. J Immunol. 2010;185:3632–3642. doi: 10.4049/jimmunol.1000944. [DOI] [PubMed] [Google Scholar]
- 4.Armah HB, Wilson NO, Sarfo BY, Powell MD, Bond VC, Anderson W, et al. Cerebrospinal fluid and serum biomarkers of cerebral malaria mortality in Ghanaian children. Malar J. 2007;6:147. doi: 10.1186/1475-2875-6-147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Artavanis-Tsakonas K, Tongren JE, Riley EM. The war between the malaria parasite and the immune system: immunity, immunoregulation and immunopathology. Clin Exp Immunol. 2003;133:145–152. doi: 10.1046/j.1365-2249.2003.02174.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Baeten J, Chohan B, Lavreys L, Chohan V, McClelland R, Certain L, et al. HIV-1 subtype D infection is associated with faster disease progression than subtype A in spite of similar plasma HIV-1 loads. J Infect Dis. 2007;195:1177–1180. doi: 10.1086/512682. [DOI] [PubMed] [Google Scholar]
- 7.Bardají A, Sigauque B, Sanz S, Maixenchs M, Ordi J, Aponte JJ, et al. Impact of malaria at the end of pregnancy on infant mortality and morbidity. J Infect Dis. 2011;203:691–699. doi: 10.1093/infdis/jiq049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Barry AE, Trieu A, Fowkes FJ, Pablo J, Kalantari-Dehaghi M, Jasinskas A, et al. The stability and complexity of antibody responses to the major surface antigen of Plasmodium falciparum are associated with age in a malaria endemic area. Mol Cell Proteomics. 2011;10:M111.008326. doi: 10.1074/mcp.M111.008326. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Belnoue E, Kayibanda M, Deschemin JC, Viguier M, Mack M, Kuziel WA, et al. CCR5 deficiency decreases susceptibility to experimental cerebral malaria. Blood. 2003;101:4253–4259. doi: 10.1182/blood-2002-05-1493. [DOI] [PubMed] [Google Scholar]
- 10.Belnoue E, Kayibanda M, Vigario AM, Deschemin JC, van Rooijen N, Viguier M, et al. On the pathogenic role of brain-sequestered alphabeta CD8+ T cells in experimental cerebral malaria. J Immunol. 2002;169:6369–6375. doi: 10.4049/jimmunol.169.11.6369. [DOI] [PubMed] [Google Scholar]
- 11.Berger O, Gan X, Gujuluva C, Burns AR, Sulur G, Stins M, et al. CXC and CC chemokine receptors on coronary and brain endothelia. Mol Med. 1999;5:795–805. [PMC free article] [PubMed] [Google Scholar]
- 12.Boivin MJ. Effects of early cerebral malaria on cognitive ability in Senegalese children. J Dev Behav Pediatr. 2002;23:353–564. doi: 10.1097/00004703-200210000-00010. [DOI] [PubMed] [Google Scholar]
- 13.Borkowsky W, Stanley K, Douglas SD, Lee S, Wiznia A, Pelton S, et al. Immunologic response to combination nucleoside analogue plus protease inhibitor therapy in stable antiretroviral therapy-experienced human immunodeficiency virus-infected children. J Infect Dis. 2000;182:96–103. doi: 10.1086/315672. [DOI] [PubMed] [Google Scholar]
- 14.Bouharoun-Tayoun H, Attanath P, Sabchareon A, Chong-suphajaisiddhi T, Druilhe P. Antibodies that protect humans against Plasmodium falciparum blood stages do not on their own inhibit parasite growth and invasion in vitro, but act in cooperation with monocytes. J Exp Med. 1990;172:1633–1641. doi: 10.1084/jem.172.6.1633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Boullier A, Bird DA, Chang MK, Dennis EA, Friedman P, Gillotre-Taylor K, et al. Scavenger receptors, oxidized LDL, and atherosclerosis. Ann N Y Acad Sci. 2001;947:214–222. doi: 10.1111/j.1749-6632.2001.tb03943.x. [DOI] [PubMed] [Google Scholar]
- 16.Brabin BJ, Kalanda BF, Verhoeff FH, Chimsuku LH, Broadhead RL. Risk factors for fetal anaemia in a malarious area of Malawi. Ann Trop Paediatr. 2004;24:311–321. doi: 10.1179/027249304225019136. [DOI] [PubMed] [Google Scholar]
- 17.Bronzan RN, Taylor TE, Mwenechanya J, Tembo M, Kayira K, Bwanaisa L, et al. Bacteremia in Malawian children with severe malaria: prevalence, etiology, HIV coinfection, and outcome. J Infect Dis. 2007;195:895–904. doi: 10.1086/511437. [DOI] [PubMed] [Google Scholar]
- 18.Brown H, Rogerson S, Taylor T, Tembo M, Mwenechanya J, Molyneux M, et al. Blood-brain barrier function in cerebral malaria in Malawian children. Am J Trop Med Hyg. 2001;64:207–213. doi: 10.4269/ajtmh.2001.64.207. [DOI] [PubMed] [Google Scholar]
- 19.Brown H, Turner G, Rogerson S, Tembo M, Mwenechanya J, Molyneux M, et al. Cytokine expression in the brain in human cerebral malaria. J Infect Dis. 1999;180:1742–1746. doi: 10.1086/315078. [DOI] [PubMed] [Google Scholar]
- 20.Buckner CM, Luers AJ, Calderon TM, Eugenin EA, Berman JW. Neuroimmunity and the blood-brain barrier: molecular regulation of leukocyte transmigration and viral entry into the nervous system with a focus on neuroAIDS. J Neuroimmune Pharmacol. 2006;1:160–181. doi: 10.1007/s11481-006-9017-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Campbell GR, Watkins JD, Loret EP, Spector SA. Differential induction of rat neuronal excitotoxic cell death by human immunodeficiency virus type 1 clade B and C Tat proteins. AIDS Res Hum Retroviruses. 2011;27:647–654. doi: 10.1089/aid.2010.0192. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Carme B, Bouquety JC, Plassart H. Mortality and sequelae due to cerebral malaria in African children in Brazzaville, Congo. Am J Trop Med Hyg. 1993;48:216–221. doi: 10.4269/ajtmh.1993.48.216. [DOI] [PubMed] [Google Scholar]
- 23.Chalwe V, Van Geertruyden JP, Mukwamataba D, Menten J, Kamalamba J, Mulenga M, et al. Increased risk for severe malaria in HIV-1-infected adults, Zambia. Emerg Infect Dis. 2009;15:749. doi: 10.3201/eid1505.081009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Chandramohan D, Greenwood BM. Is there an interaction between human immunodeficiency virus and Plasmodium falciparum? Int J Epidemiol. 1998;27:296–301. doi: 10.1093/ije/27.2.296. [DOI] [PubMed] [Google Scholar]
- 25.Chen Q, Heddini A, Barragan A, Fernandez V, Pearce SF, Wahlgren M. The semiconserved head structure of Plasmodium falciparum erythrocyte membrane protein 1 mediates binding to multiple independent host receptors. J Exp Med. 2000;192:1–10. doi: 10.1084/jem.192.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Chirmule N, Oyaizu N, Kalyanaraman VS, Pahwa S. Inhibition of normal B-cell function by human immunodeficiency virus envelope glycoprotein, gp120. Blood. 1992;79:1245–1254. [PubMed] [Google Scholar]
- 27.Chizzolini C, Grau GE, Geinoz A, Schrijvers D. T lymphocyte interferon-gamma production induced by Plasmodium falciparum antigen is high in recently infected non-immune and low in immune subjects. Clin Exp Immunol. 1990;79:95–99. doi: 10.1111/j.1365-2249.1990.tb05133.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Clerici M, Shearer GM. A TH1. → TH2 switch is a critical step in the etiology of HIV infection, Immunol Today. 1993;14:107–111. doi: 10.1016/0167-5699(93)90208-3. [DOI] [PubMed] [Google Scholar]
- 29.Clifford DB, Mitike MT, Mekonnen Y, Zhang J, Zenebe G, Melaku Z, et al. Neurological evaluation of untreated human immunodeficiency virus infected adults in Ethiopia. J Neurovirol. 2007;13:67–72. doi: 10.1080/13550280601169837. [DOI] [PubMed] [Google Scholar]
- 30.Cloke TE, Garvey L, Choi BS, Abebe T, Hailu A, Hancock M, et al. Increased level of arginase activity correlates with disease severity in HIV-seropositive patients. J Infect Dis. 2010;202:374–385. doi: 10.1086/653736. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Coban C, Ishii KJ, Uematsu S, Arisue N, Sato S, Yamamoto M, et al. Pathological role of Toll-like receptor signaling in cerebral malaria. Int Immunol. 2007;19:67–79. doi: 10.1093/intimm/dxl123. [DOI] [PubMed] [Google Scholar]
- 32.Cohen C, Karstaedt A, Frean J, Thomas J, Govender N, Prentice E, et al. Increased prevalence of severe malaria in HIV-infected adults in South Africa. Clin Infect Dis. 2005;41:1631–1637. doi: 10.1086/498023. [DOI] [PubMed] [Google Scholar]
- 33.Colebunders R, Bahwe Y, Nekwei W, Ryder R, Perriens J, Nsimba K, et al. Incidence of malaria and efficacy of oral quinine in patients recently infected with human immunodeficiency virus in Kinshasa, Zaire. J Infect. 1990;21:167–173. doi: 10.1016/0163-4453(90)91701-e. [DOI] [PubMed] [Google Scholar]
- 34.Combes V, El-Assaad F, Faille D, Jambou R, Hunt NH, Grau GE. Microvesiculation and cell interactions at the brain-endothelial interface in cerebral malaria pathogenesis. Prog Neurobiol. 2010;91:140–151. doi: 10.1016/j.pneurobio.2010.01.007. [DOI] [PubMed] [Google Scholar]
- 35.Combes V, Taylor TE, Juhan-Vague I, Mège JL, Mwenechanya J, Tembo M, et al. Circulating endothelial microparticles in malawian children with severe falciparum malaria complicated with coma. JAMA. 2004;291:2542–2544. doi: 10.1001/jama.291.21.2542-b. [DOI] [PubMed] [Google Scholar]
- 36.Costa G, Loizon S, Guenot M, Mocan I, Halary F, de Saint-Basile G, et al. Control of Plasmodium falciparum erythrocytic cycle: γδ T cells target the red blood cell-invasive merozoites. Blood. 2011;118:6952–6962. doi: 10.1182/blood-2011-08-376111. [DOI] [PubMed] [Google Scholar]
- 37.Davenport GC, Ouma C, Hittner JB, Were T, Ouma Y, Ong’echa JM, et al. Hematological predictors of increased severe anemia in Kenyan children coinfected with Plasmodium falciparum and HIV-1. Am J Hematol. 2010;85:227–233. doi: 10.1002/ajh.21653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.de Kossodo S, Grau GE. Profiles of cytokine production in relation with susceptibility to cerebral malaria. J Immunol. 1993;151:4811–4820. [PubMed] [Google Scholar]
- 39.de Larrañaga GF, Petroni A, Deluchi G, Alonso BS, Benetucci JA. Viral load and disease progression as responsible for endothelial activation and/or injury in human immunodeficiency virus-1-infected patients. Blood Coagul Fibrinolysis. 2003;14:15–18. doi: 10.1097/00001721-200301000-00004. [DOI] [PubMed] [Google Scholar]
- 40.de Martino M, Tovo PA, Galli L, Gabiano C, Cozzani S, Gotta C, et al. Prognostic significance of immunologic changes in 675 infants perinatally exposed to human immunodeficiency virus. The Italian Register for Human Immunodeficiency Virus Infection in Children. J Pediatr. 1991;119:702–709. doi: 10.1016/s0022-3476(05)80283-5. [DOI] [PubMed] [Google Scholar]
- 41.Dickson DW, Belman AL, Park YD, Wiley C, Horoupian DS, Llena J, et al. Central nervous system pathology in pediatric AIDS: an autopsy study. APMIS Suppl. 1989;8:40–57. [PubMed] [Google Scholar]
- 42.Diou J, Gauthier S, Tardif MR, Fromentin R, Lodge R, Sullivan DJ, Jr, et al. Ingestion of the malaria pigment hemozoin renders human macrophages less permissive to HIV-1 infection. Virology. 2009;395:56–66. doi: 10.1016/j.virol.2009.09.010. [DOI] [PubMed] [Google Scholar]
- 43.Diou J, Tardif MR, Barat C, Tremblay MJ. Dendritic cells derived from hemozoin-loaded monocytes display a partial maturation phenotype that promotes HIV-1 trans-infection of CD4+ T cells and virus replication. J Immunol. 2010;184:2899–2907. doi: 10.4049/jimmunol.0901513. [DOI] [PubMed] [Google Scholar]
- 44.D’Ombrain MC, Hansen DS, Simpson KM, Schofield L. γδ-t cells expressing NK receptors predominate over NK cells and conventional T cells in the innate IFN-γ response to Plasmodium falciparum malaria. Eur J Immunol. 2007;37:1864–1873. doi: 10.1002/eji.200636889. [DOI] [PubMed] [Google Scholar]
- 45.Dorovini-Zis K, Schmidt K, Huynh H, Fu W, Whitten RO, Milner D, et al. The neuropathology of fatal cerebral malaria in malawian children. Am J Pathol. 2011;178:2146–2158. doi: 10.1016/j.ajpath.2011.01.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Duffy PE. Plasmodium in the placenta: parasites, parity, protection, prevention and possibly preeclampsia. Parasitology. 2007;134:1877–1881. doi: 10.1017/S0031182007000170. [DOI] [PubMed] [Google Scholar]
- 47.Eller MA, Eller LA, Ouma BJ, Thelian D, Gonzalez VD, Guwatudde D, et al. Elevated natural killer cell activity despite altered functional and phenotypic profile in Ugandans with HIV-1 clade A or clade D infection. J Acquir Immune Defic Syndr. 2009;51:380–389. doi: 10.1097/QAI.0b013e3181aa256e. [DOI] [PubMed] [Google Scholar]
- 48.Eugenin EA, Gamss R, Buckner C, Buono D, Klein RS, Schoenbaum EE, et al. Shedding of PECAM-1 during HIV infection: a potential role for soluble PECAM-1 in the pathogenesis of neuroAIDS. J Leukoc Biol. 2006;79:444–452. doi: 10.1189/jlb.0405215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Faille D, Combes V, Mitchell AJ, Fontaine A, Juhan-Vague I, Alessi MC, et al. Platelet microparticles: a new player in malaria parasite cytoadherence to human brain endothelium. FASEB J. 2009;23:3449–3458. doi: 10.1096/fj.09-135822. [DOI] [PubMed] [Google Scholar]
- 50.Francesconi P, Fabiani M, Dente MG, Lukwiya M, Okwey R, Ouma J, et al. HIV, malaria parasites, and acute febrile episodes in Ugandan adults: a case-control study. AIDS. 2001;15:2445–2450. doi: 10.1097/00002030-200112070-00013. [DOI] [PubMed] [Google Scholar]
- 51.Francischetti IM, Seydel KB, Monteiro RQ, Whitten RO, Erexson CR, Noronha AL, et al. Plasmodium falciparum-infected erythrocytes induce tissue factor expression in endothelial cells and support the assembly of multimolecular coagulation complexes. J Thromb Haemost. 2007;5:155–165. doi: 10.1111/j.1538-7836.2006.02232.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Franke MF, Spiegelman D, Ezeamama A, Aboud S, Msamanga GI, Mehta S, et al. Malaria parasitemia and CD4 T cell count, viral load, and adverse HIV outcomes among HIV-infected pregnant women in Tanzania. Am J Trop Med Hyg. 2010;82:556–562. doi: 10.4269/ajtmh.2010.09-0477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Franke-Fayard B, Janse CJ, Cunha-Rodrigues M, Ramesar J, Büscher P, Que I, et al. Murine malaria parasite sequestration: CD36 is the major receptor, but cerebral pathology is unlinked to sequestration. Proc Natl Acad Sci U S A. 2005;102:11468–11473. doi: 10.1073/pnas.0503386102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.French N, Gilks CF. Royal Society of Tropical Medicine and Hygiene meeting at Manson House, London, 18 March 1999. Fresh from the field: some controversies in tropical medicine and hygiene. HIV and malaria, do they interact? Trans R Soc Trop Med Hyg. 2000;94:233–237. doi: 10.1016/s0035-9203(00)90301-8. [DOI] [PubMed] [Google Scholar]
- 55.French N, Nakiyingi J, Lugada E, Watera C, Whitworth JA, Gilks CF. Increasing rates of malarial fever with deteriorating immune status in HIV-1-infected Ugandan adults. AIDS. 2001;15:899–906. doi: 10.1097/00002030-200105040-00010. [DOI] [PubMed] [Google Scholar]
- 56.Fried M, Nosten F, Brockman A, Brabin BJ, Duffy PE. Maternal antibodies block malaria. Nature. 1998;395:851–852. doi: 10.1038/27570. [DOI] [PubMed] [Google Scholar]
- 57.Gandhi N, Saiyed Z, Thangavel S, Rodriguez J, Rao KV, Nair MP. Differential effects of HIV type 1 clade B and clade C Tat protein on expression of proinflammatory and antiinflammatory cytokines by primary monocytes. AIDS Res Hum Retroviruses. 2009;25:691–699. doi: 10.1089/aid.2008.0299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Gandhi N, Saiyed ZM, Napuri J, Samikkannu T, Reddy PV, Agudelo M, et al. Interactive role of human immunodeficiency virus type 1 (HIV-1) clade-specific Tat protein and cocaine in blood-brain barrier dysfunction: implications for HIV-1-associated neurocognitive disorder. J Neurovirol. 2010;16:294–305. doi: 10.3109/13550284.2010.499891. [DOI] [PubMed] [Google Scholar]
- 59.Garcia PM, Kalish LA, Pitt J, Minkoff H, Quinn TC, Burchett SK, et al. Maternal levels of plasma human immunodeficiency virus type 1 RNA and the risk of perinatal transmission. Women and Infants Transmission Study Group. N Engl J Med. 1999;341:394–402. doi: 10.1056/NEJM199908053410602. [DOI] [PubMed] [Google Scholar]
- 60.Gendelman HE, Grant I, Everall IP, Lipton SA. The Neurology of AIDS. 2. Oxford University Press; London: 2005. [Google Scholar]
- 61.Gillrie MR, Krishnegowda G, Lee K, Buret AG, Robbins SM, Looareesuwan S, et al. Src-family kinase dependent disruption of endothelial barrier function by Plasmodium falciparum merozoite proteins. Blood. 2007;110:3426–3435. doi: 10.1182/blood-2007-04-084582. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.González-Scarano F, Martín-García J. The neuropathogenesis of AIDS. Nat Rev Immunol. 2005;5:69–81. doi: 10.1038/nri1527. [DOI] [PubMed] [Google Scholar]
- 63.Good MF, Doolan DL. Immune effector mechanisms in malaria. Curr Opin Immunol. 1999;11:412–419. doi: 10.1016/S0952-7915(99)80069-7. [DOI] [PubMed] [Google Scholar]
- 64.Grau GE, Fajardo LF, Piguet PF, Allet B, Lambert PH, VP Tumor necrosis factor (cachectin) as an essential mediator in murine cerebral malaria. Science. 1987;237:1210–1212. doi: 10.1126/science.3306918. [DOI] [PubMed] [Google Scholar]
- 65.Grau GE, Heremans H, Piguet PF, Pointaire P, Lambert PH, Billiau A, et al. Monoclonal antibody against interferon gamma can prevent experimental cerebral malaria and its associated overproduction of tumor necrosis factor. Proc Natl Acad Sci U S A. 1989;86:5572–5574. doi: 10.1073/pnas.86.14.5572. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Grau GE, Mackenzie CD, Carr RA, Redard M, Pizzolato G, Allasia C, et al. Platelet accumulation in brain microvessels in fatal pediatric cerebral malaria. J Infect Dis. 2003;187:461–466. doi: 10.1086/367960. [DOI] [PubMed] [Google Scholar]
- 67.Grau GE, Piguet PF, Engers HD, Louis JA, Vassalli P, Lambert PH. L3T4+ T lymphocytes play a major role in the pathogenesis of murine cerebral malaria. J Immunol. 1986;137:2348–2354. [PubMed] [Google Scholar]
- 68.Greenberg AE, Nsa W, Ryder RW, Medi M, Nzeza M, Kitadi N, et al. Plasmodium Falciparum malaria and perinatally acquired human immunodeficiency virus type 1 infection in Kinshasa, Zaire. A prospective, longitudinal cohort study of 587 children. N Engl J Med. 1991;325:105–109. doi: 10.1056/NEJM199107113250206. [DOI] [PubMed] [Google Scholar]
- 69.Grimwade K, French N, Mbatha DD, Zungu DD, Dedicoat M, Gilks CF. Childhood malaria in a region of unstable transmission and high human immunodeficiency virus prevalence. Pediatr Infect Dis J. 2003;22:1057–1063. doi: 10.1097/01.inf.0000101188.95433.60. [DOI] [PubMed] [Google Scholar]
- 70.Grimwade K, French N, Mbatha DD, Zungu DD, Dedicoat M, Gilks CF. HIV infection as a cofactor for severe falciparum malaria in adults living in a region of unstable malaria transmission in South Africa. AIDS. 2004;18:547–554. doi: 10.1097/00002030-200402200-00023. [DOI] [PubMed] [Google Scholar]
- 71.Gupta JD, Satishchandra P, Gopukumar K, Wilkie F, Waldrop-Valverde D, Ellis R, et al. Neuropsychological deficits in human immunodeficiency virus type 1 clade C-seropositive adults from South India. J Neurovirol. 2007;13:195–202. doi: 10.1080/13550280701258407. [DOI] [PubMed] [Google Scholar]
- 72.Hansen DS, Bernard NJ, Nie CQ, Schofield L. NK cells stimulate recruitment of CXCR3+ T cells to the brain during Plasmodium berghei-mediated cerebral malaria. J Immunol. 2007;178:5779–5788. doi: 10.4049/jimmunol.178.9.5779. [DOI] [PubMed] [Google Scholar]
- 73.Hearn J, Rayment N, Landon DN, Katz DR, de Souza JB. Immunopathology of cerebral malaria: morphological evidence of parasite sequestration in murine brain microvasculature. Infect Immun. 2000;68:5364–5376. doi: 10.1128/iai.68.9.5364-5376.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Hirschtick RE, Glassroth J, Jordan MC, Wilcosky TC, Wallace JM, Kvale PA, et al. Bacterial pneumonia in persons infected with the human immunodeficiency virus. Pulmonary Complications of HIV Infection Study Group. N Engl J Med. 1995;333:845–851. doi: 10.1056/NEJM199509283331305. [DOI] [PubMed] [Google Scholar]
- 75.Hoffman IF, Jere CS, Taylor TE, Munthali P, Dyer JR, Wirima JJ, et al. The effect of Plasmodium falciparum malaria on HIV-1 RNA blood plasma concentration. AIDS. 1999;13:487–494. doi: 10.1097/00002030-199903110-00007. [DOI] [PubMed] [Google Scholar]
- 76.Hoffman SL, Rustama D, Punjabi NH, Surampaet B, Sanjaya B, Dimpudus AJ, et al. High-dose dexamethasone in quinine-treated patients with cerebral malaria: a double-blind, placebo-controlled trial. J Infect Dis. 1988;158:325–331. doi: 10.1093/infdis/158.2.325. [DOI] [PubMed] [Google Scholar]
- 77.Hunt NH, Golenser J, Chan-Ling T, Parekh S, Rae C, Potter S, et al. Immunopathogenesis of cerebral malaria. Int J Parasitol. 2006;36:569–582. doi: 10.1016/j.ijpara.2006.02.016. [DOI] [PubMed] [Google Scholar]
- 78.Huy NT, Trang DT, Kariu T, Sasai M, Saida K, Harada S, et al. Leukocyte activation by malarial pigment. Parasitol Int. 2006;55:75–81. doi: 10.1016/j.parint.2005.10.003. [DOI] [PubMed] [Google Scholar]
- 79.Imani PD, Musoke P, Byarugaba J, Tumwine JK. Human immunodeficiency virus infection and cerebral malaria in children in Uganda: a case-control study. BMC Pediatr. 2011;11:5. doi: 10.1186/1471-2431-11-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Jain V, Armah HB, Tongren JE, Ned RM, Wilson NO, Crawford S, et al. Plasma IP-10, apoptotic and angiogenic factors associated with fatal cerebral malaria in India. Malar J. 2008;7:83. doi: 10.1186/1475-2875-7-83. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Janota I, Doshi B. Cerebral malaria in the United Kingdom. J Clin Pathol. 1979;32:769–772. doi: 10.1136/jcp.32.8.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82.Jarvis JN, Harrison TS. HIV-associated cryptococcal meningitis. AIDS. 2007;21:2119–2129. doi: 10.1097/QAD.0b013e3282a4a64d. [DOI] [PubMed] [Google Scholar]
- 83.Joska JA, Fincham DS, Stein DJ, Paul RH, Seedat S. Clinical correlates of HIV-associated neurocognitive disorders in South Africa. AIDS Behav. 2010;14:371–378. doi: 10.1007/s10461-009-9538-x. [DOI] [PubMed] [Google Scholar]
- 84.Jung S, Unutmaz D, Wong P, Sano G, De los Santos K, Sparwasser T, et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity. 2002;17:211–220. doi: 10.1016/s1074-7613(02)00365-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.Kalanda BF, Verhoeff FH, Chimsuku L, Harper G, Brabin BJ. Adverse birth outcomes in a malarious area. Epidemiol Infect. 2006;134:659–666. doi: 10.1017/S0950268805005285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86.Kaleebu P, French N, Mahe C, Yirrell D, Watera C, Lyagoba F, et al. Effect of human immunodeficiency virus (HIV) type 1 envelope subtypes A and D on disease progression in a large cohort of HIV-1-positive persons in Uganda. J Infect Dis. 2002;185:1244–1250. doi: 10.1086/340130. [DOI] [PubMed] [Google Scholar]
- 87.Kamya MR, Gasasira AF, Yeka A, Bakyaita N, Nsobya SL, Francis D, et al. Effect of HIV-1 infection on antimalarial treatment outcomes in Uganda: a population-based study. J Infect Dis. 2006;193:9–15. doi: 10.1086/498577. [DOI] [PubMed] [Google Scholar]
- 88.Kedzierska K, Crowe SM. The role of monocytes and macrophages in the pathogenesis of HIV-1 infection. Curr Med Chem. 2002;9:1893–1903. doi: 10.2174/0929867023368935. [DOI] [PubMed] [Google Scholar]
- 89.Keller M, Lu Y, Lalonde RG, Klein MB. Impact of HIV-1 viral subtype on CD4+ T-cell decline and clinical outcomes in antiretroviral naive patients receiving universal healthcare. AIDS. 2009;23:731–737. doi: 10.1097/QAD.0b013e328326f77f. [DOI] [PubMed] [Google Scholar]
- 90.Khasnis AA, Karnad DR. Human immunodeficiency virus type 1 infection in patients with severe falciparum malaria in urban India. J Postgrad Med. 2003;49:114–117. [PubMed] [Google Scholar]
- 91.Khusmith S, Druilhe P. Antibody-dependent ingestion of P. falciparum merozoites by human blood monocytes. Parasite Immunol. 1983;5:357–368. doi: 10.1111/j.1365-3024.1983.tb00751.x. [DOI] [PubMed] [Google Scholar]
- 92.Kiwanuka N, Laeyendecker O, Robb M, Kigozi G, Arroyo M, McCutchan F, et al. Effect of human immunodeficiency virus Type 1 (HIV-1) subtype on disease progression in persons from Rakai, Uganda, with incident HIV-1 infection. J Infect Dis. 2008;197:707–713. doi: 10.1086/527416. [DOI] [PubMed] [Google Scholar]
- 93.Kolb S, Sporer B, Lahrtz F, Koedel U, Pfister H, Fontana A. Identification of a T cell chemotactic factor in the cerebrospinal fluid of HIV-1-infected individuals as interferon-gamma inducible protein 10. J Neuroimmunol. 1999;93:172–181. doi: 10.1016/s0165-5728(98)00223-9. [DOI] [PubMed] [Google Scholar]
- 94.Kublin J, Patnaik P, Jere C, Miller W, Hoffman I, Chimbiya N, et al. Effect of Plasmodium falciparum malaria on concentration of HIV-1-RNA in the blood of adults in rural Malawi: a prospective cohort study. Lancet. 2005;365:233–240. doi: 10.1016/S0140-6736(05)17743-5. [DOI] [PubMed] [Google Scholar]
- 95.Kure K, Llena JF, Lyman WD, Soeiro R, Weidenheim KM, Hirano A, et al. Human immunodeficiency virus-1 infection of the nervous system: an autopsy study of 268 adult, pediatric, and fetal brains. Hum Pathol. 1991;22:700–710. doi: 10.1016/0046-8177(91)90293-x. [DOI] [PubMed] [Google Scholar]
- 96.Kwiatkowski D, Hill AV, Sambou I, Twumasi P, Castracane J, Manogue KR, et al. TNF concentration in fatal cerebral, non-fatal cerebral, and uncomplicated Plasmodium falciparum malaria. Lancet. 1990;336:1201–1204. doi: 10.1016/0140-6736(90)92827-5. [DOI] [PubMed] [Google Scholar]
- 97.Kyu HH, Fernández E. Artemisinin derivatives versus quinine for cerebral malaria in African children: a systematic review. Bull World Health Organ. 2009;87:896–904. doi: 10.2471/BLT.08.060327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.Lane BR, King SR, Bock PJ, Strieter RM, Coffey MJ, Markovitz DM. The C-X-C chemokine IP-10 stimulates HIV-1 replication. Virology. 2003;307:122–134. doi: 10.1016/s0042-6822(02)00045-4. [DOI] [PubMed] [Google Scholar]
- 99.Leaver RJ, Haile Z, Watters DA. HIV and cerebral malaria. Trans R Soc Trop Med Hyg. 1990;84:201. doi: 10.1016/0035-9203(90)90253-b. [DOI] [PubMed] [Google Scholar]
- 100.Letendre SL, Ellis RJ, Everall I, Ances B, Bharti A, McCutchan JA. Neurologic complications of HIV disease and their treatment. Top HIV Med. 2009;17:46–56. [PMC free article] [PubMed] [Google Scholar]
- 101.Li H, Pauza CD. HIV envelope-mediated, CCR5/α4β7-dependent killing of CD4-negative γδ T cells which are lost during progression to AIDS. Blood. 2011;118:5824–8531. doi: 10.1182/blood-2011-05-356535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.Li J, Chang WL, Sun G, Chen HL, Specian RD, Berney SM, et al. Intercellular adhesion molecule 1 is important for the development of severe experimental malaria but is not required for leukocyte adhesion in the brain. J Investig Med. 2003;51:128–140. doi: 10.1136/jim-51-03-15. [DOI] [PubMed] [Google Scholar]
- 103.Lichtner M, Marañón C, Vidalain PO, Azocar O, Hanau D, Lebon P, et al. HIV type 1-infected dendritic cells induce apoptotic death in infected and uninfected primary CD4 T lymphocytes. AIDS Res Hum Retroviruses. 2004;20:175–182. doi: 10.1089/088922204773004897. [DOI] [PubMed] [Google Scholar]
- 104.Longwe H, Gordon S, Malamba R, French N. Characterising B cell numbers and memory B cells in HIV infected and uninfected Malawian adults. BMC Infect Dis. 2010;10:280. doi: 10.1186/1471-2334-10-280. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 105.Lucas R, Juillard P, Decoster E, Redard M, Burger D, Donati Y, et al. Crucial role of tumor necrosis factor (TNF) receptor 2 and membrane-bound TNF in experimental cerebral malaria. Eur J Immunol. 1997;27:1719–1725. doi: 10.1002/eji.1830270719. [DOI] [PubMed] [Google Scholar]
- 106.Lundie RJ, de Koning-Ward TF, Davey GM, Nie CQ, Hansen DS, Lau LS, et al. Blood-stage Plasmodium infection induces CD8+ T lymphocytes to parasite-expressed antigens, largely regulated by CD8alpha+ dendritic cells. Proc Natl Acad Sci U S A. 2008;105:14509–14514. doi: 10.1073/pnas.0806727105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.Lunel F, Druilhe P. Effector cells involved in nonspecific and antibody-dependent mechanisms directed against Plasmodium falciparum blood stages in vitro. Infect Immun. 1989;57:2043–2049. doi: 10.1128/iai.57.7.2043-2049.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 108.Lyke KE, Diallo DA, Dicko A, Kone A, Coulibaly D, Guindo A, et al. Association of intraleukocytic plasmodium falciparum malaria pigment with disease severity, clinical manifestations, and prognosis in severe malaria. Am J Trop Med Hyg. 2003;69:253–259. [PubMed] [Google Scholar]
- 109.Marañón C, Desoutter JF, Hoeffel G, Cohen W, Hanau D, Hosmalin A. Dendritic cells cross-present HIV antigens from live as well as apoptotic infected CD4+ T lymphocytes. Proc Natl Acad Sci U S A. 2004;101:6092–6097. doi: 10.1073/pnas.0304860101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 110.McCall MB, Roestenberg M, Ploemen I, Teirlinck A, Hopman J, de Mast Q, et al. Memory-like ifn-γ response by NK cells following malaria infection reveals the crucial role of T cells in NK cell activation by P. falciparum. Eur J Immunol. 2010;40:3472–3477. doi: 10.1002/eji.201040587. [DOI] [PubMed] [Google Scholar]
- 111.McGregor IA. The passive transfer of human malarial immunity. Am J Trop Med Hyg. 1964;13:237–239. doi: 10.4269/ajtmh.1964.13.237. [DOI] [PubMed] [Google Scholar]
- 112.Medana IM, Turner GD. Human cerebral malaria and the blood-brain barrier. Int J Parasitol. 2006;36:555–568. doi: 10.1016/j.ijpara.2006.02.004. [DOI] [PubMed] [Google Scholar]
- 113.Mermin J, Lule JR, Ekwaru JP. Association between malaria and CD4 cell count decline among persons with HIV. J Acquir Immune Defic Syndr. 2006;41:129–130. doi: 10.1097/01.qai.0000179427.11789.a7. [DOI] [PubMed] [Google Scholar]
- 114.Meroni L, Riva A, Morelli P, Galazzi M, Mologni D, Adorni F, et al. Increased CD36 expression on circulating monocytes during HIV infection. J Acquir Immune Defic Syndr. 2005;38:310–313. [PubMed] [Google Scholar]
- 115.Millington OR, Gibson VB, Rush CM, Zinselmeyer BH, Phillips RS, Garside P, et al. Malaria impairs T cell clustering and immune priming despite normal signal 1 from dendritic cells. PLoS Pathog. 2007;3:e143. doi: 10.1371/journal.ppat.0030143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 116.Milner DA., Jr Rethinking cerebral malaria pathology. Curr Opin Infect Dis. 2010;23:456–463. doi: 10.1097/QCO.0b013e32833c3dbe. [DOI] [PubMed] [Google Scholar]
- 117.Miu J, Mitchell AJ, Müller M, Carter SL, Manders PM, McQuillan JA, et al. Chemokine gene expression during fatal murine cerebral malaria and protection due to CXCR3 deficiency. J Immunol. 2008;180:1217–1230. doi: 10.4049/jimmunol.180.2.1217. [DOI] [PubMed] [Google Scholar]
- 118.Mohan K, Moulin P, Stevenson MM. Natural killer cell cytokine production, not cytotoxicity, contributes to resistance against blood-stage Plasmodium chabaudi AS infection. J Immunol. 1997;159:4990–4998. [PubMed] [Google Scholar]
- 119.Mohanty S, Mishra SK, Patnaik R, Dutt AK, Pradhan S, Das B, et al. Brain swelling and mannitol therapy in adult cerebral malaria: a randomized trial. Clin Infect Dis. 2011;53:349–355. doi: 10.1093/cid/cir405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 120.Molyneux ME, Taylor TE, Wirima JJ, Borgstein A. Clinical features and prognostic indicators in paediatric cerebral malaria: a study of 131 comatose Malawian children. Q J Med. 1989;71:441–459. [PubMed] [Google Scholar]
- 121.Müller O, Moser R. The clinical and parasitological presentation of Plasmodium falciparum malaria in Uganda is unaffected by HIV-1 infection. Trans R Soc Trop Med Hyg. 1990;84:336–338. doi: 10.1016/0035-9203(90)90306-y. [DOI] [PubMed] [Google Scholar]
- 122.Muller WA, Weigl SA, Deng X, Phillips DM. PECAM-1 is required for transendothelial migration of leukocytes. J Exp Med. 1993;178:449–460. doi: 10.1084/jem.178.2.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 123.Muthusamy A, Achur RN, Bhavanandan VP, Fouda GG, Taylor DW, Gowda DC. Plasmodium falciparum-infected erythrocytes adhere both in the intervillous space and on the villous surface of human placenta by binding to the low-sulfated chondroitin sulfate proteoglycan receptor. Am J Pathol. 2004;164:2013–2025. doi: 10.1016/S0002-9440(10)63761-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 124.Namutangula B, Ndeezi G, Byarugaba JS, Tumwine JK. Mannitol as adjunct therapy for childhood cerebral malaria in Uganda: a randomized clinical trial. Malar J. 2007;6:138. doi: 10.1186/1475-2875-6-138. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 125.Newton C, Crawley J, Sowumni A, Waruiru C, Mwangi I, English M, et al. Intracranial hypertension in Africans with cerebral malaria. Arch Dis Child. 1997;76:219–226. doi: 10.1136/adc.76.3.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 126.Newton C, Kirkham FJ, Winstanley PA, Pasvol G, Peshu N, Warrell DA, et al. Intracranial pressure in African children with cerebral malaria. Lancet. 1991;337:573–576. doi: 10.1016/0140-6736(91)91638-b. [DOI] [PubMed] [Google Scholar]
- 127.Newton C, Peshu N, Kendall B, Kirkham F, Sowunmi A, Waruiru C, et al. Brain swelling and ischaemia in Kenyans with cerebral malaria. Arch Dis Child. 1994;70:281–287. doi: 10.1136/adc.70.4.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 128.Nguyen-Dinh P, Greenberg AE, Mann JM, Kabote N, Francis H, Colebunders RL, et al. Absence of association between Plasmodium falciparum malaria and human immunodeficiency virus infection in children in Kinshasa, Zaire. Bull World Health Organ. 1987;65:607–613. [PMC free article] [PubMed] [Google Scholar]
- 129.Nie CQ, Bernard NJ, Norman MU, Amante FH, Lundie RJ, Crabb BS, et al. IP-10-mediated T cell homing promotes cerebral inflammation over splenic immunity to malaria infection. PLoS Pathog. 2009;5:e1000369. doi: 10.1371/journal.ppat.1000369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 130.Otieno RO, Ouma C, Ong’echa JM, Keller CC, Were T, Waindi EN, et al. Increased severe anemia in HIV-1-exposed and HIV-1-positive infants and children during acute malaria. AIDS. 2006;20:275–280. doi: 10.1097/01.aids.0000200533.56490.b7. [DOI] [PubMed] [Google Scholar]
- 131.Pain A, Ferguson DJ, Kai O, Urban BC, Lowe B, Marsh K, et al. Platelet-mediated clumping of Plasmodium falciparum-infected erythrocytes is a common adhesive phenotype and is associated with severe malaria. Proc Natl Acad Sci U S A. 2001;98:1805–1810. doi: 10.1073/pnas.98.4.1805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 132.Perrault SD, Hajek J, Zhong K, Owino SO, Sichangi M, Smith G, et al. Human immunodeficiency virus co-infection increases placental parasite density and transplacental malaria transmission in Western Kenya. Am J Trop Med Hyg. 2009;80:119–125. [PMC free article] [PubMed] [Google Scholar]
- 133.Pichyangkul S, Saengkrai P, Webster HK. Plasmodium falciparum pigment induces monocytes to release high levels of tumor necrosis factor-alpha and interleukin-1 beta. Am J Trop Med Hyg. 1994;51:430–435. [PubMed] [Google Scholar]
- 134.Pope M, Haase AT. Transmission, acute HIV-1 infection and the quest for strategies to prevent infection. Nat Med. 2003;9:847–852. doi: 10.1038/nm0703-847. [DOI] [PubMed] [Google Scholar]
- 135.Potchen MJ, Birbeck GL, Demarco JK, Kampondeni SD, Beare N, Molyneux ME, et al. Neuroimaging findings in children with retinopathy-confirmed cerebral malaria. Eur J Radiol. 2010;74:262–268. doi: 10.1016/j.ejrad.2009.02.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 136.Prakash D, Fesel C, Jain R, Cazenave PA, Mishra GC, Pied S. Clusters of cytokines determine malaria severity in Plasmodium falciparum-infected patients from endemic areas of Central India. J Infect Dis. 2006;194:198–207. doi: 10.1086/504720. [DOI] [PubMed] [Google Scholar]
- 137.Price RW, Brew B, Sidtis J, Rosenblum M, Scheck AC, Cleary P. The brain in AIDS: central nervous system HIV-1 infection and AIDS dementia complex. Science. 1988;239:586–592. doi: 10.1126/science.3277272. [DOI] [PubMed] [Google Scholar]
- 138.Quinn TC, Wawer MJ, Sewankambo N, Serwadda D, Li C, Wabwire-Mangen F, et al. Viral load and heterosexual transmission of human immunodeficiency virus type 1. Rakai Project Study Group. N Engl J Med. 2000;342:921–929. doi: 10.1056/NEJM200003303421303. [DOI] [PubMed] [Google Scholar]
- 139.AR, Hasang W, Wilson DW, Beeson JG, Mwapasa V, Molyneux ME, et al. Using an improved phagocytosis assay to evaluate the effect of HIV on specific antibodies to pregnancy-associated malaria. PLoS One. 2010;5:e10807. doi: 10.1371/journal.pone.0010807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 140.Rao VR, Sas AR, Eugenin EA, Siddappa NB, Bimonte-Nelson H, Berman JW, et al. HIV-1 clade-specific differences in the induction of neuropathogenesis. J Neurosci. 2008;28:10010–10016. doi: 10.1523/JNEUROSCI.2955-08.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 141.Reyburn H, Mbatia R, Drakeley C, Bruce J, Carneiro I, Olomi R, et al. Association of transmission intensity and age with clinical manifestations and case fatality of severe Plasmodium falciparum malaria. JAMA. 2005;293:1461–1470. doi: 10.1001/jama.293.12.1461. [DOI] [PubMed] [Google Scholar]
- 142.Ricke CH, Staalsoe T, Koram K, Akanmori BD, Riley EM, Theander TG, et al. Plasma antibodies from malaria-exposed pregnant women recognize variant surface antigens on Plasmodium falciparum-infected erythrocytes in a parity-dependent manner and block parasite adhesion to chondroitin sulfate A. J Immunol. 2000;165:3309–3316. doi: 10.4049/jimmunol.165.6.3309. [DOI] [PubMed] [Google Scholar]
- 143.Rubbo PA, Tuaillon E, Nagot N, Chentoufi AA, Bolloré K, Reynes J, et al. HIV-1 infection impairs HSV-specific CD4(+) and CD8(+) T-cell response by reducing Th1 cytokines and CCR5 ligand secretion. J Acquir Immune Defic Syndr. 2011;58:9–17. doi: 10.1097/QAI.0b013e318224d0ad. [DOI] [PubMed] [Google Scholar]
- 144.Ryder RW, Nsa W, Hassig SE, Behets F, Rayfield M, Ekungola B, et al. Perinatal transmission of the human immunodeficiency virus type 1 to infants of seropositive women in Zaire. N Engl J Med. 1989;320:1637–1642. doi: 10.1056/NEJM198906223202501. [DOI] [PubMed] [Google Scholar]
- 145.Sabchareon A, Burnouf T, Ouattara D, Attanath P, Bouharoun-Tayoun H, Chantavanich P, et al. Parasitologic and clinical human response to immunoglobulin administration in falciparum malaria. Am J Trop Med Hyg. 1991;45:297–308. doi: 10.4269/ajtmh.1991.45.297. [DOI] [PubMed] [Google Scholar]
- 146.Sacktor N, McDermott MP, Marder K, Schifitto G, Selnes OA, McArthur JC, et al. HIV-associated cognitive impairment before and after the advent of combination therapy. J Neurovirol. 2002;8:136–142. doi: 10.1080/13550280290049615. [DOI] [PubMed] [Google Scholar]
- 147.Sacktor N, Nakasujja N, Skolasky RL, Rezapour M, Robertson K, Musisi S, et al. HIV subtype D is associated with dementia, compared with subtype A, in immunosuppressed individuals at risk of cognitive impairment in Kampala, Uganda. Clin Infect Dis. 2009;49:780–786. doi: 10.1086/605284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 148.Sanders RW, de Jong EC, Baldwin CE, Schuitemaker JH, Kapsenberg ML, Berkhout B. Differential transmission of human immunodeficiency virus type 1 by distinct subsets of effector dendritic cells. J Virol. 2002;76:7812–7821. doi: 10.1128/JVI.76.15.7812-7821.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 149.Schluesener H, Kremsner P, Meyermann R. Widespread expression of MRP8 and MRP14 in human cerebral malaria by microglial cells. Acta Neuropathol. 1998;96:575–580. doi: 10.1007/s004010050938. [DOI] [PubMed] [Google Scholar]
- 150.Schnittman SM, Lane HC, Higgins SE, Folks T, Fauci AS. Direct polyclonal activation of human B lymphocytes by the acquired immune deficiency syndrome virus. Science. 1986;233:1084–1086. doi: 10.1126/science.3016902. [DOI] [PubMed] [Google Scholar]
- 151.Schofield L, Grau GE. Immunological processes in malaria pathogenesis. Nat Rev Immunol. 2005;5:722–735. doi: 10.1038/nri1686. [DOI] [PubMed] [Google Scholar]
- 152.Schwarzer E, Alessio M, Ulliers D, Arese P. Phagocytosis of the malarial pigment, hemozoin, impairs expression of major histocompatibility complex class II antigen, CD54, and CD11c in human monocytes. Infect Immun. 1998;66:1601–1606. doi: 10.1128/iai.66.4.1601-1606.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 153.Schwarzer E, Turrini F, Ulliers D, Giribaldi G, Ginsburg H, Arese P. Impairment of macrophage functions after ingestion of Plasmodium falciparum-infected erythrocytes or isolated malarial pigment. J Exp Med. 1992;176:1033–1041. doi: 10.1084/jem.176.4.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 154.Scott JA, Berkley JA, Mwangi I, Ochola L, Uyoga S, Macharia A, et al. Relation between falciparum malaria and bacteraemia in Kenyan children: a population-based, case-control study and a longitudinal study. Lancet. 2011;378:1316–1323. doi: 10.1016/S0140-6736(11)60888-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 155.Seydel KB, Kampondeni S, Potchen M, Birbeck G, Molyneux M, Taylor T. Clinical correlates of magnetic resonance imaging in pediatric cerebral malaria. American Society of Tropical Medicine and Hygiene 60th Annual Meeting, The American Society of Tropical Medicine and Hygiene; Philadelphia, PA. 2011. [Google Scholar]
- 156.Sherry BA, Alava G, Tracey KJ, Martiney J, Cerami A, Slater AF. Malaria-specific metabolite hemozoin mediates the release of several potent endogenous pyrogens (TNF, MIP-1 alpha, and MIP-1 beta) in vitro, and altered thermoregulation in vivo. J Inflamm. 1995;45:85–96. [PubMed] [Google Scholar]
- 157.Silva AA, Roffê E, Santiago H, Marino AP, Kroll-Palhares K, Teixeira MM, et al. Trypanosoma cruzi-triggered meningoencephalitis is a CCR1/CCR5-independent inflammatory process. J Neuroimmunol. 2007;184:156–163. doi: 10.1016/j.jneuroim.2006.12.013. [DOI] [PubMed] [Google Scholar]
- 158.Simooya OO, Mwendapole RM, Siziya S, Fleming AF. Relation between falciparum malaria and HIV seropositivity in Ndola, Zambia. BMJ. 1988;297:30–31. doi: 10.1136/bmj.297.6640.30. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 159.Skorokhod OA, Alessio M, Mordmüller B, Arese P, Schwarzer E. Hemozoin (malarial pigment) inhibits differentiation and maturation of human monocyte-derived dendritic cells: a peroxisome proliferator-activated receptor-gamma-mediated effect. J Immunol. 2004;173:4066–4074. doi: 10.4049/jimmunol.173.6.4066. [DOI] [PubMed] [Google Scholar]
- 160.Skorokhod OA, Caione L, Marrocco T, Migliardi G, Barrera V, Arese P, et al. Inhibition of erythropoiesis in malaria anemia: role of hemozoin and hemozoin-generated 4-hydroxynonenal. Blood. 2010;116:4328–4337. doi: 10.1182/blood-2010-03-272781. [DOI] [PubMed] [Google Scholar]
- 161.Snider WD, Simpson DM, Nielsen S, Gold JW, Metroka CE, Posner JB. Neurological complications of acquired immune deficiency syndrome: analysis of 50 patients. Ann Neurol. 1983;14:403–418. doi: 10.1002/ana.410140404. [DOI] [PubMed] [Google Scholar]
- 162.Spitz S. The pathology of acute falciparum malaria. Mil Surg. 1946;99:555–572. [PubMed] [Google Scholar]
- 163.Steketee RW, Wirima JJ, Bloland PB, Chilima B, Mermin JH, Chitsulo L, et al. Impairment of a pregnant woman’s acquired ability to limit Plasmodium falciparum by infection with human immunodeficiency virus type-1. Am J Trop Med Hyg. 1996;55:42–49. doi: 10.4269/ajtmh.1996.55.42. [DOI] [PubMed] [Google Scholar]
- 164.Stevenson MM, Riley EM. Innate immunity to malaria. Nat Rev Immunol. 2004;4:169–180. doi: 10.1038/nri1311. [DOI] [PubMed] [Google Scholar]
- 165.Suh HS, Cosenza-Nashat M, Choi N, Zhao ML, Li JF, Pollard JW, et al. Insulin-like growth factor 2 receptor is an IFNgamma-inducible microglial protein that facilitates intracellular HIV replication: implications for HIV-induced neurocognitive disorders. Am J Pathol. 2010;177:2446–2458. doi: 10.2353/ajpath.2010.100399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 166.Suh HS, Zhao ML, Choi N, Belbin TJ, Brosnan CF, Lee SC. TLR3 and TLR4 are innate antiviral immune receptors in human microglia: role of IRF3 in modulating antiviral and inflammatory response in the CNS. Virology. 2009;392:246–259. doi: 10.1016/j.virol.2009.07.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 167.Sun G, Chang WL, Li J, Berney SM, Kimpel D, van der Heyde HC. Inhibition of platelet adherence to brain microvasculature protects against severe Plasmodium berghei malaria. Infect Immun. 2003;71:6553–6561. doi: 10.1128/IAI.71.11.6553-6561.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 168.Susomboon P, Maneerat Y, Dekumyoy P, Kalambaheti T, Iwagami M, Komaki-Yasuda K, et al. Down-regulation of tight junction mRNAs in human endothelial cells co-cultured with Plasmodium falciparum-infected erythrocytes. Parasitol Int. 2006;55:107–112. doi: 10.1016/j.parint.2005.11.054. [DOI] [PubMed] [Google Scholar]
- 169.Taha TE, Canner JK, Dallabetta GA, Chiphangwi JD, Liomba G, Wangel AM, et al. Childhood malaria par-asitaemia and human immunodeficiency virus infection in Malawi. Trans R Soc Trop Med Hyg. 1994;88:164–165. doi: 10.1016/0035-9203(94)90277-1. [DOI] [PubMed] [Google Scholar]
- 170.Taylor T, Fu W, Carr R, Whitten R, Mueller J, Fosiko N, et al. Differentiating the pathologies of cerebral malaria by postmortem parasite counts. Nat Med. 2004;10:143–145. doi: 10.1038/nm986. [DOI] [PubMed] [Google Scholar]
- 171.Teasdale G, Jennett B. Assessment of coma and impaired consciousness. A practical scale. Lancet. 1974;304:81–84. doi: 10.1016/s0140-6736(74)91639-0. [DOI] [PubMed] [Google Scholar]
- 172.Tkachuk AN, Moormann AM, Poore JA, Rochford RA, Chensue SW, Mwapasa V, et al. Malaria enhances expression of CC chemokine receptor 5 on placental macrophages. J Infect Dis. 2001;183:967–972. doi: 10.1086/319248. [DOI] [PubMed] [Google Scholar]
- 173.Traoré B, Muanza K, Looareesuwan S, Supavej S, Khusmith S, Danis M, et al. Cytoadherence characteristics of Plasmodium falciparum isolates in Thailand using an in vitro human lung endothelial cells model. Am J Trop Med Hyg. 2000;62:38–44. doi: 10.4269/ajtmh.2000.62.38. [DOI] [PubMed] [Google Scholar]
- 174.Treutiger CJ, Heddini A, Fernandez V, Muller WA, Wahlgren M. PECAM-1/CD31, an endothelial receptor for binding Plasmodium falciparum-infected erythrocytes. Nat Med. 1997;3:1405–1408. doi: 10.1038/nm1297-1405. [DOI] [PubMed] [Google Scholar]
- 175.Turner GD, Morrison H, Jones M, Davis TM, Looareesuwan S, Buley ID, et al. An immunohistochemical study of the pathology of fatal malaria. Evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration. Am J Pathol. 1994;145:1057–1069. [PMC free article] [PubMed] [Google Scholar]
- 176.UNAIDS. AIDS epidemic update. UNAIDS and WHO; Geneva: 2007. [Google Scholar]
- 177.Urban BC, Ferguson DJ, Pain A, Willcox N, Plebanski M, Austyn JM, et al. Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature. 1999;400:73–77. doi: 10.1038/21900. [DOI] [PubMed] [Google Scholar]
- 178.Urban BC, Ing R, Stevenson MM. Early interactions between blood-stage plasmodium parasites and the immune system. Curr Top Microbiol Immunol. 2005;297:25–70. doi: 10.1007/3-540-29967-x_2. [DOI] [PubMed] [Google Scholar]
- 179.van Eijk AM, Ayisi JG, ter Kuile FO, Misore AO, Otieno JA, Rosen DH, et al. HIV increases the risk of malaria in women of all gravidities in Kisumu, Kenya. AIDS. 2003;17:595–603. doi: 10.1097/00002030-200303070-00015. [DOI] [PubMed] [Google Scholar]
- 180.Van Geertruyden JP, Mulenga M, Kasongo W, Polman K, Colebunders R, Kestens L, et al. CD4 T-cell count and HIV-1 infection in adults with uncomplicated malaria. J Acquir Immune Defic Syndr. 2006;43:363–367. doi: 10.1097/01.qai.0000243125.98024.da. [DOI] [PubMed] [Google Scholar]
- 181.van Hensbroek MB, Palmer A, Onyiorah E, Schneider G, Jaffar S, Dolan G, et al. The effect of a monoclonal antibody to tumor necrosis factor on survival from childhood cerebral malaria. J Infect Dis. 1996;174:1091–1097. doi: 10.1093/infdis/174.5.1091. [DOI] [PubMed] [Google Scholar]
- 182.Varney NR, Roberts RJ, Springer JA, Connell SK, Wood PS. Neuropsychiatric sequelae of cerebral malaria in Vietnam veterans. J Nerv Ment Dis. 1997;185:695–703. doi: 10.1097/00005053-199711000-00008. [DOI] [PubMed] [Google Scholar]
- 183.Vasan A, Renjifo B, Hertzmark E, Chaplin B, Msamanga G, Essex M, et al. Different rates of disease progression of HIV type 1 infection in Tanzania based on infecting subtype. Clin Infect Dis. 2006;42:843–852. doi: 10.1086/499952. [DOI] [PubMed] [Google Scholar]
- 184.Verhoeff FH, Brabin BJ, Hart CA, Chimsuku L, Kazembe P, Broadhead RL. Increased prevalence of malaria in HIV-infected pregnant women and its implications for malaria control. Trop Med Int Health. 1999;4:5–12. doi: 10.1046/j.1365-3156.1999.00349.x. [DOI] [PubMed] [Google Scholar]
- 185.Vilela MC, Mansur DS, Lacerda-Queiroz N, Rodrigues DH, Lima GK, Arantes RM, et al. The chemokine CCL5 is essential for leukocyte recruitment in a model of severe Herpes simplex encephalitis. Ann N Y Acad Sci. 2009;1153:256–263. doi: 10.1111/j.1749-6632.2008.03959.x. [DOI] [PubMed] [Google Scholar]
- 186.Villegas-Mendez A, de Souza JB, Murungi L, Hafalla JC, Shaw TN, Greig R, et al. Heterogeneous and tissue-specific regulation of effector T cell responses by IFN-gamma during Plasmodium berghei ANKA infection. J Immunol. 2011;187:2885–2897. doi: 10.4049/jimmunol.1100241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 187.Walther M, Tongren JE, Andrews L, Korbel D, King E, Fletcher H, et al. Upregulation of TGF-beta, FOXP3, and CD4+CD25+ regulatory T cells correlates with more rapid parasite growth in human malaria infection. Immunity. 2005;23:287–296. doi: 10.1016/j.immuni.2005.08.006. [DOI] [PubMed] [Google Scholar]
- 188.Wang J, Zhang W, Nardi MA, Li Z. HIV-1 Tat-induced platelet activation and release of CD154 contribute to HIV-1-associated autoimmune thrombocytopenia. Thromb Haemost. 2011;9:562–573. doi: 10.1111/j.1538-7836.2010.04168.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 189.Warrell DA, Looareesuwan S, Warrell MJ, Kasemsarn P, Intaraprasert R, Bunnag D, et al. Dexamethasone proves deleterious in cerebral malaria. A double-blind trial in 100 comatose patients. N Engl J Med. 1982;306:313–319. doi: 10.1056/NEJM198202113060601. [DOI] [PubMed] [Google Scholar]
- 190.Wassmer SC, Combes V, Candal FJ, Juhan-Vague I, Grau GE. Platelets potentiate brain endothelial alterations induced by Plasmodium falciparum. Infect Immun. 2006;74:645–653. doi: 10.1128/IAI.74.1.645-653.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 191.Wassmer SC, Lépolard C, Traoré B, Pouvelle B, Gysin J, Grau GE. Platelets reorient Plasmodium falciparum-infected erythrocyte cytoadhesion to activated endothelial cells. J Infect Dis. 2004;189:180–189. doi: 10.1086/380761. [DOI] [PubMed] [Google Scholar]
- 192.Watkinson M, Rushton DI. Plasmodial pigmentation of placenta and outcome of pregnancy in West African mothers. Br Med J (Clin Res Ed) 1983;287:251–254. doi: 10.1136/bmj.287.6387.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 193.Weinberg JB, Lopansri BK, Mwaikambo E, Granger DL. Arginine, nitric oxide, carbon monoxide, and endothe-lial function in severe malaria. Curr Opin Infect Dis. 2008;21:468–475. doi: 10.1097/QCO.0b013e32830ef5cf. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 194.Weiss L, Donkova-Petrini V, Caccavelli L, Balbo M, Carbonneil C, Levy Y. Human immunodeficiency virus-driven expansion of CD4+CD25+ regulatory T cells, which suppress HIV-specific CD4 T-cell responses in HIV-infected patients. Blood. 2004;104:3249–3256. doi: 10.1182/blood-2004-01-0365. [DOI] [PubMed] [Google Scholar]
- 195.WHO. Malaria and HIV/AIDS interactions and implications: Conclusions of a technical consultation convened by WHO, 23–25 june 2004. World Health Organization; Geneva: 2004. WHO/HIV/2004.08. [Google Scholar]
- 196.WHO. World Malaria Report 2008. World Health Organization; Geneva: 2008. WHO/HTM/GMP/2008.1. [Google Scholar]
- 197.WHO. Fact sheet No 94. World Health Organization; Geneva: 2008. World Malaria Report 2011. Available from: http://www.who.int/mediacentre/factsheets/fs094/en/index.html. [Google Scholar]
- 198.WHO. World Malaria Report 2010. World Health Organization; Geneva: 2010. WHO/HTM/GMP/2010.1. [Google Scholar]
- 199.Wiley CA, Belman AL, Dickson DW, Rubinstein A, Nelson JA. Human immunodeficiency virus within the brains of children with AIDS. Clin Neuropathol. 1990;9:1–6. [PubMed] [Google Scholar]
- 200.Wilson NS, Behrens GM, Lundie RJ, Smith CM, Waithman J, Young L, et al. Systemic activation of dendritic cells by Toll-like receptor ligands or malaria infection impairs cross-presentation and antiviral immunity. Nat Immunol. 2006;7:165–172. doi: 10.1038/ni1300. [DOI] [PubMed] [Google Scholar]
- 201.Wolf K, Tsakiris DA, Weber R, Erb P, Battegay M. Antiretroviral therapy reduces markers of endothelial and coagulation activation in patients infected with human immunodeficiency virus type 1. J Infect Dis. 2002;185:456–462. doi: 10.1086/338572. [DOI] [PubMed] [Google Scholar]
- 202.Wong MH, Robertson K, Nakasujja N, Skolasky R, Musisi S, Katabira E, et al. Frequency of and risk factors for HIV dementia in an HIV clinic in sub-Saharan Africa. Neurology. 2007;68:350–355. doi: 10.1212/01.wnl.0000252811.48891.6d. [DOI] [PubMed] [Google Scholar]
- 203.World Health Organization, . Severe falciparum malaria. Trans R Soc Trop Med Hyg. 2000;94:1–90. [PubMed] [Google Scholar]
- 204.Yang B, Singh S, Bressani R, Kanmogne GD. Crosstalk between STAT1 and PI3K/AKT signaling in HIV-1-induced blood-brain barrier dysfunction: role of CCR5 and implications for viral neuropathogenesis. J Neurosci Res. 2010;88:3090–3101. doi: 10.1002/jnr.22458. [DOI] [PMC free article] [PubMed] [Google Scholar]