Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1991 Feb 25;19(4):861–866. doi: 10.1093/nar/19.4.861

Genomic fingerprints produced by PCR with consensus tRNA gene primers.

J Welsh 1, M McClelland 1
PMCID: PMC333722  PMID: 2017367

Abstract

The polymerase chain reaction using only a single 'consensus' tRNA gene primer, or a pair of primers facing outward from tRNA genes, amplifies a set of DNA fragments in bacterial, plant and animal genomic DNAs. Presumably, these PCR fingerprints are mainly derived from the regions between closely linked tRNA genes. The pattern of the PCR products is determined by which genomes and which primer(s) are used. Genomic fingerprints are largely conserved within a species and, in bacteria, most products in the fingerprint are conserved between closely related species. Thus, PCR with tRNA gene consensus primers helps to identify species and genera.

Full text

PDF
861

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cinco M., Banfi E., Balanzin D., Cacciò S., Graziosi G., Fattorini P. Restriction endonuclease analysis of four Borrelia burgdorferi strains. FEMS Microbiol Immunol. 1989 Dec;1(8-9):511–514. doi: 10.1111/j.1574-6968.1989.tb02443.x. [DOI] [PubMed] [Google Scholar]
  2. Fox T. D. Natural variation in the genetic code. Annu Rev Genet. 1987;21:67–91. doi: 10.1146/annurev.ge.21.120187.000435. [DOI] [PubMed] [Google Scholar]
  3. Giroux S., Beaudet J., Cedergren R. Highly repetitive tRNA(Pro)-tRNA(His) gene cluster from Photobacterium phosphoreum. J Bacteriol. 1988 Dec;170(12):5601–5606. doi: 10.1128/jb.170.12.5601-5606.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kloos W. E. Natural populations of the genus Staphylococcus. Annu Rev Microbiol. 1980;34:559–592. doi: 10.1146/annurev.mi.34.100180.003015. [DOI] [PubMed] [Google Scholar]
  5. Ledbetter S. A., Nelson D. L., Warren S. T., Ledbetter D. H. Rapid isolation of DNA probes within specific chromosome regions by interspersed repetitive sequence polymerase chain reaction. Genomics. 1990 Mar;6(3):475–481. doi: 10.1016/0888-7543(90)90477-c. [DOI] [PubMed] [Google Scholar]
  6. McBride O. W., Pirtle I. L., Pirtle R. M. Localization of three DNA segments encompassing tRNA genes to human chromosomes 1, 5, and 16: proposed mechanism and significance of tRNA gene dispersion. Genomics. 1989 Oct;5(3):561–573. doi: 10.1016/0888-7543(89)90024-4. [DOI] [PubMed] [Google Scholar]
  7. Meyer A., Kocher T. D., Basasibwaki P., Wilson A. C. Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature. 1990 Oct 11;347(6293):550–553. doi: 10.1038/347550a0. [DOI] [PubMed] [Google Scholar]
  8. Nelson D. L., Ledbetter S. A., Corbo L., Victoria M. F., Ramírez-Solis R., Webster T. D., Ledbetter D. H., Caskey C. T. Alu polymerase chain reaction: a method for rapid isolation of human-specific sequences from complex DNA sources. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6686–6690. doi: 10.1073/pnas.86.17.6686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rogers M. J., Steinmetz A. A., Walker R. T. A Spiroplasma tRNA gene cluster. Isr J Med Sci. 1984 Sep;20(9):768–772. [PubMed] [Google Scholar]
  10. Rossi J. J., Landy A. Structure and organization of the two tRNATyr gene clusters on the E. coli chromosome. Cell. 1979 Mar;16(3):523–534. doi: 10.1016/0092-8674(79)90027-8. [DOI] [PubMed] [Google Scholar]
  11. Vold B. S. Structure and organization of genes for transfer ribonucleic acid in Bacillus subtilis. Microbiol Rev. 1985 Mar;49(1):71–80. doi: 10.1128/mr.49.1.71-80.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Welsh J., McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 1990 Dec 25;18(24):7213–7218. doi: 10.1093/nar/18.24.7213. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES