Abstract
The naturally occurring DNA-nucleopeptide H-Asp-Ser[5'-pAAAGTAAGCC-3']-Glu-OH was prepared via a solid-phase phosphite triester approach using N-2-(tert-butyldiphenylsilyloxymethyl)benzoyl protected nucleosides. The oligonucleotide was linked via the extremely base-labile oxalyl ester anchor to the solid support.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alul R. H., Singman C. N., Zhang G. R., Letsinger R. L. Oxalyl-CPG: a labile support for synthesis of sensitive oligonucleotide derivatives. Nucleic Acids Res. 1991 Apr 11;19(7):1527–1532. doi: 10.1093/nar/19.7.1527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dreef-Tromp C. M., van Dam E. M., van den Elst H., van der Marel G. A., van Boom J. H. Solid-phase synthesis of H-Phe-Tyr-(pATAT)-NH2: a nucleopeptide fragment from the nucleoprotein of bacteriophage phi X174. Nucleic Acids Res. 1990 Nov 25;18(22):6491–6495. doi: 10.1093/nar/18.22.6491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gait M. J., Matthes H. W., Singh M., Sproat B. S., Titmas R. C. Rapid synthesis of oligodeoxyribonucleotides. VII. Solid phase synthesis of oligodeoxyribonucleotides by a continuous flow phosphotriester method on a kieselguhr-polyamide support. Nucleic Acids Res. 1982 Oct 25;10(20):6243–6254. doi: 10.1093/nar/10.20.6243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hermoso J. M., Méndez E., Soriano F., Salas M. Location of the serine residue involved in the linkage between the terminal protein and the DNA of phage phi 29. Nucleic Acids Res. 1985 Nov 11;13(21):7715–7728. doi: 10.1093/nar/13.21.7715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hermoso J. M., Salas M. Protein p3 is linked to the DNA of phage phi 29 through a phosphoester bond between serine and 5'-dAMP. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6425–6428. doi: 10.1073/pnas.77.11.6425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelly T. J., Wold M. S., Li J. Initiation of viral DNA replication. Adv Virus Res. 1988;34:1–42. doi: 10.1016/s0065-3527(08)60514-x. [DOI] [PubMed] [Google Scholar]
- Kuyl-Yeheskiely E., Dreef-Tromp C. M., Geluk A., van der Marel G. A., van Boom J. H. Synthesis of the nucleopeptides H-Phe-Tyr(pGC)-NH2 and H-Phe-Ser(pGC)-Ala-OH via a phosphotriester approach. Nucleic Acids Res. 1989 Apr 25;17(8):2897–2905. doi: 10.1093/nar/17.8.2897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuyl-Yeheskiely E., Tromp C. M., Schaeffer A. H., van der Marel G. A., van Boom J. H. A model study directed towards the preparation of nucleopeptides via H-phosphonate intermediates. Nucleic Acids Res. 1987 Feb 25;15(4):1807–1818. doi: 10.1093/nar/15.4.1807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shabarova Z. A. Synthetic nucleotide-peptides. Prog Nucleic Acid Res Mol Biol. 1970;10:145–182. doi: 10.1016/s0079-6603(08)60564-4. [DOI] [PubMed] [Google Scholar]
- Sinha N. D., Biernat J., McManus J., Köster H. Polymer support oligonucleotide synthesis XVIII: use of beta-cyanoethyl-N,N-dialkylamino-/N-morpholino phosphoramidite of deoxynucleosides for the synthesis of DNA fragments simplifying deprotection and isolation of the final product. Nucleic Acids Res. 1984 Jun 11;12(11):4539–4557. doi: 10.1093/nar/12.11.4539. [DOI] [PMC free article] [PubMed] [Google Scholar]
