Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Nucleic Acids Research logoLink to Nucleic Acids Research
. 1992 Sep 11;20(17):4499–4505. doi: 10.1093/nar/20.17.4499

Thiolation of transfer RNA in Escherichia coli varies with growth rate.

V Emilsson 1, A K Näslund 1, C G Kurland 1
PMCID: PMC334177  PMID: 1383926

Abstract

We have used an affinity electrophoresis assay which when combined with Northern hybridization techniques permits us to estimate the degree of thiolation of individual tRNA species in Escherichia coli. We observe that the levels of 4-thio 2'(3')-uridine (4-thioU) in many but not all tRNAs varies dramatically at different bacterial growth rates: Five tRNAs are completely thiolated at all growth rates, while another eight tRNAs are incompletely thiolated and the fraction of the unthiolated form of these tRNA species increases as the growth rates increase. Transfer RNA(2Glu) contains 4-thioU as well as (methylamino)methyl-2-thio uridine (mnm(5)2-thioU). The level of mnm(5)2-thioU of tRNA(2Glu) is invariant with growth rate. Surprisingly, none of the thirteen tRNA species that we have studied is completely unmodified in all growth media. In particular, at the slowest growth rates every tRNA class that we have studied contains a form that has 4-thioU residues.

Full text

PDF
4499

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ajitkumar P., Cherayil J. D. Thionucleosides in transfer ribonucleic acid: diversity, structure, biosynthesis, and function. Microbiol Rev. 1988 Mar;52(1):103–113. doi: 10.1128/mr.52.1.103-113.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bartz J., Söll D., Burrows W. J., Skoog F. Identification of the cytokinin-active ribonucleosides in pure Escherichia coli tRNA species. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1448–1453. doi: 10.1073/pnas.67.3.1448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bouadloun F., Srichaiyo T., Isaksson L. A., Björk G. R. Influence of modification next to the anticodon in tRNA on codon context sensitivity of translational suppression and accuracy. J Bacteriol. 1986 Jun;166(3):1022–1027. doi: 10.1128/jb.166.3.1022-1027.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Diaz I., Ehrenberg M., Kurland C. G. How do combinations of rpsL- and miaA- generate streptomycin dependence? Mol Gen Genet. 1986 Feb;202(2):207–211. doi: 10.1007/BF00331638. [DOI] [PubMed] [Google Scholar]
  5. Emilsson V., Kurland C. G. Growth rate dependence of transfer RNA abundance in Escherichia coli. EMBO J. 1990 Dec;9(13):4359–4366. doi: 10.1002/j.1460-2075.1990.tb07885.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Guyer M. S., Reed R. R., Steitz J. A., Low K. B. Identification of a sex-factor-affinity site in E. coli as gamma delta. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 1):135–140. doi: 10.1101/sqb.1981.045.01.022. [DOI] [PubMed] [Google Scholar]
  7. Hagervall T. G., Björk G. R. Undermodification in the first position of the anticodon of supG-tRNA reduces translational efficiency. Mol Gen Genet. 1984;196(2):194–200. doi: 10.1007/BF00328050. [DOI] [PubMed] [Google Scholar]
  8. Igloi G. L. Interaction of tRNAs and of phosphorothioate-substituted nucleic acids with an organomercurial. Probing the chemical environment of thiolated residues by affinity electrophoresis. Biochemistry. 1988 May 17;27(10):3842–3849. doi: 10.1021/bi00410a048. [DOI] [PubMed] [Google Scholar]
  9. Jelenc P. C., Kurland C. G. Nucleoside triphosphate regeneration decreases the frequency of translation errors. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3174–3178. doi: 10.1073/pnas.76.7.3174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kitchingman G. R., Fournier M. J. Modification-deficient transfer ribonucleic acids from relaxed control Escherichia coli: structures of the major undermodified phenylalanine and leucine transfer RNAs produced during leucine starvation. Biochemistry. 1977 May 17;16(10):2213–2220. doi: 10.1021/bi00629a027. [DOI] [PubMed] [Google Scholar]
  11. Komine Y., Adachi T., Inokuchi H., Ozeki H. Genomic organization and physical mapping of the transfer RNA genes in Escherichia coli K12. J Mol Biol. 1990 Apr 20;212(4):579–598. doi: 10.1016/0022-2836(90)90224-A. [DOI] [PubMed] [Google Scholar]
  12. Neidhardt F. C., Bloch P. L., Smith D. F. Culture medium for enterobacteria. J Bacteriol. 1974 Sep;119(3):736–747. doi: 10.1128/jb.119.3.736-747.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Saneyoshi M., Nishimura S. Alteration of codon recognition of Escherichia coli transfer RNA by modification with cyanogen bromide. Biochim Biophys Acta. 1967 Aug 22;145(1):208–210. doi: 10.1016/0005-2787(67)90680-6. [DOI] [PubMed] [Google Scholar]
  14. Thomale J., Nass G. Alteration of the intracellular concentration of aminoacyl-tRNA synthetases and isoaccepting tRNAs during amino-acid limited growth in Escherichia coli. Eur J Biochem. 1978 Apr 17;85(2):407–418. doi: 10.1111/j.1432-1033.1978.tb12253.x. [DOI] [PubMed] [Google Scholar]
  15. Thomas G., Favre A. 4-Thiouridine triggers both growth delay induced by near-ultraviolet light and photoprotection. Eur J Biochem. 1980 Dec;113(1):67–74. doi: 10.1111/j.1432-1033.1980.tb06140.x. [DOI] [PubMed] [Google Scholar]
  16. Vold B. S. Post-transcriptional modifications of the anticodon loop region: alterations in isoaccepting species of tRNA's during development in Bacillus subtilis. J Bacteriol. 1978 Jul;135(1):124–132. doi: 10.1128/jb.135.1.124-132.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Watanabe K., Shinma M., Oshima T., Nishimura S. Heat-induced stability of tRNA from an extreme thermophile, Thermus thermophilus. Biochem Biophys Res Commun. 1976 Oct 4;72(3):1137–1144. doi: 10.1016/s0006-291x(76)80250-1. [DOI] [PubMed] [Google Scholar]
  18. Yamaizumi Z., Kuchino Y., Harada F., Nishimura S., McCloskey J. A. Primary structure of Escherichia coli tRNA UUR Leu. Presence of an unknown adenosine derivative in the first position of the anticodon which recognizes the UU codon series. J Biol Chem. 1980 Mar 10;255(5):2220–2225. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES