Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1992 Oct 11;20(19):4971–4974. doi: 10.1093/nar/20.19.4971

Disulfide bonds are required for Serratia marcescens nuclease activity.

T K Ball 1, Y Suh 1, M J Benedik 1
PMCID: PMC334271  PMID: 1329033

Abstract

The role of the two disulfide bonds found in the Serratia marcescens nuclease were tested by site directed mutagenesis and were found essential for nuclease activity, although slight residual activity remained. The requirement for disulfide bond formation may play a role in preventing the lethal action of nuclease while in the bacterial cytoplasm.

Full text

PDF
4971

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ball T. K., Saurugger P. N., Benedik M. J. The extracellular nuclease gene of Serratia marcescens and its secretion from Escherichia coli. Gene. 1987;57(2-3):183–192. doi: 10.1016/0378-1119(87)90121-1. [DOI] [PubMed] [Google Scholar]
  2. Ball T. K., Wasmuth C. R., Braunagel S. C., Benedik M. J. Expression of Serratia marcescens extracellular proteins requires recA. J Bacteriol. 1990 Jan;172(1):342–349. doi: 10.1128/jb.172.1.342-349.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bardwell J. C., McGovern K., Beckwith J. Identification of a protein required for disulfide bond formation in vivo. Cell. 1991 Nov 1;67(3):581–589. doi: 10.1016/0092-8674(91)90532-4. [DOI] [PubMed] [Google Scholar]
  4. Biedermann K., Jepsen P. K., Riise E., Svendsen I. Purification and characterization of a Serratia marcescens nuclease produced by Escherichia coli. Carlsberg Res Commun. 1989;54(1):17–27. doi: 10.1007/BF02910469. [DOI] [PubMed] [Google Scholar]
  5. Chen Y. C., Shipley G. L., Ball T. K., Benedik M. J. Regulatory mutants and transcriptional control of the Serratia marcescens extracellular nuclease gene. Mol Microbiol. 1992 Mar;6(5):643–651. doi: 10.1111/j.1365-2958.1992.tb01512.x. [DOI] [PubMed] [Google Scholar]
  6. Derman A. I., Beckwith J. Escherichia coli alkaline phosphatase fails to acquire disulfide bonds when retained in the cytoplasm. J Bacteriol. 1991 Dec;173(23):7719–7722. doi: 10.1128/jb.173.23.7719-7722.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Doig A. J., Williams D. H. Is the hydrophobic effect stabilizing or destabilizing in proteins? The contribution of disulphide bonds to protein stability. J Mol Biol. 1991 Jan 20;217(2):389–398. doi: 10.1016/0022-2836(91)90551-g. [DOI] [PubMed] [Google Scholar]
  8. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  9. Létoffé S., Delepelaire P., Wandersman C. Characterization of a protein inhibitor of extracellular proteases produced by Erwinia chrysanthemi. Mol Microbiol. 1989 Jan;3(1):79–86. doi: 10.1111/j.1365-2958.1989.tb00106.x. [DOI] [PubMed] [Google Scholar]
  10. Nakahama K., Yoshimura K., Marumoto R., Kikuchi M., Lee I. S., Hase T., Matsubara H. Cloning and sequencing of Serratia protease gene. Nucleic Acids Res. 1986 Jul 25;14(14):5843–5855. doi: 10.1093/nar/14.14.5843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Pugsley A. P. The ins and outs of colicins. Part II. Lethal action, immunity and ecological implications. Microbiol Sci. 1984 Nov;1(8):203–205. [PubMed] [Google Scholar]
  12. Suh Y., Benedik M. J. Production of active Serratia marcescens metalloprotease from Escherichia coli by alpha-hemolysin HlyB and HlyD. J Bacteriol. 1992 Apr;174(7):2361–2366. doi: 10.1128/jb.174.7.2361-2366.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Vieira J., Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982 Oct;19(3):259–268. doi: 10.1016/0378-1119(82)90015-4. [DOI] [PubMed] [Google Scholar]
  14. Yanagida N., Uozumi T., Beppu T. Specific excretion of Serratia marcescens protease through the outer membrane of Escherichia coli. J Bacteriol. 1986 Jun;166(3):937–944. doi: 10.1128/jb.166.3.937-944.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Zhu L. Q., Gangopadhyay T., Padmanabha K. P., Deutscher M. P. Escherichia coli rna gene encoding RNase I: cloning, overexpression, subcellular distribution of the enzyme, and use of an rna deletion to identify additional RNases. J Bacteriol. 1990 Jun;172(6):3146–3151. doi: 10.1128/jb.172.6.3146-3151.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES