Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1992 Oct 25;20(20):5383–5387. doi: 10.1093/nar/20.20.5383

Cytosine nucleoside inhibition of the ATPase of Escherichia coli termination factor rho: evidence for a base specific interaction between rho and RNA.

L V Richardson 1, J P Richardson 1
PMCID: PMC334345  PMID: 1437555

Abstract

The function of rho factor in transcription termination depends on interactions with nascent RNA molecules that contain unpaired cytidylate residues. We show that cytidine, as a free nucleoside, inhibits the binding of rho to lambda cro mRNA and is a competitive inhibitor of rho-ATPase activity with lambda cro mRNA as cofactor. The relative ability of various cytidine analogs and other nucleosides to inhibit the rho-RNA interaction was used to probe features responsible for the base specificity of rho action. The results suggest that rho has a specificity pocket in its polynucleotide-binding site that apparently can make H-bond interactions with the side of the cytosine ring that normally faces away from the sugar ring and that may involve a relatively close fit along the edge of the ribose ring at the C2' carbon. The nature of the complex of rho with cytidine nucleotides was analyzed further by determining whether incubation with BrCMP caused inactivation of rho ATPase. Although BrCMP could form Michaelis inhibition complexes, it did not activate rho. Rho thus lacks a diagnostic property of enzymes that make specific covalent addition complexes with pyrimidines.

Full text

PDF
5383

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brennan C. A., Dombroski A. J., Platt T. Transcription termination factor rho is an RNA-DNA helicase. Cell. 1987 Mar 27;48(6):945–952. doi: 10.1016/0092-8674(87)90703-3. [DOI] [PubMed] [Google Scholar]
  2. Ceruzzi M. A., Bektesh S. L., Richardson J. P. Interaction of rho factor with bacteriophage lambda cro gene transcripts. J Biol Chem. 1985 Aug 5;260(16):9412–9418. [PubMed] [Google Scholar]
  3. Chen C. Y., Galluppi G. R., Richardson J. P. Transcription termination at lambda tR1 is mediated by interaction of rho with specific single-stranded domains near the 3' end of cro mRNA. Cell. 1986 Sep 26;46(7):1023–1028. doi: 10.1016/0092-8674(86)90701-4. [DOI] [PubMed] [Google Scholar]
  4. Davanloo P., Rosenberg A. H., Dunn J. J., Studier F. W. Cloning and expression of the gene for bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2035–2039. doi: 10.1073/pnas.81.7.2035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dombroski A. J., Platt T. Structure of rho factor: an RNA-binding domain and a separate region with strong similarity to proven ATP-binding domains. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2538–2542. doi: 10.1073/pnas.85.8.2538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Faus I., Richardson J. P. Thermodynamic and enzymological characterization of the interaction between transcription termination factor rho and lambda cro mRNA. Biochemistry. 1989 Apr 18;28(8):3510–3517. doi: 10.1021/bi00434a054. [DOI] [PubMed] [Google Scholar]
  7. Galluppi G. R., Richardson J. P. ATP-induced changes in the binding of RNA synthesis termination protein Rho to RNA. J Mol Biol. 1980 Apr 15;138(3):513–539. doi: 10.1016/s0022-2836(80)80016-7. [DOI] [PubMed] [Google Scholar]
  8. Lowery-Goldhammer C., Richardson J. P. An RNA-dependent nucleoside triphosphate phosphohydrolase (ATPase) associated with rho termination factor. Proc Natl Acad Sci U S A. 1974 May;71(5):2003–2007. doi: 10.1073/pnas.71.5.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lowery C., Richardson J. P. Characterization of the nucleoside triphosphate phosphohydrolase (ATPase) activity of RNA synthesis termination factor p. II. Influence of synthetic RNA homopolymers and random copolymers on the reaction. J Biol Chem. 1977 Feb 25;252(4):1381–1385. [PubMed] [Google Scholar]
  10. McSwiggen J. A., Bear D. G., von Hippel P. H. Interactions of Escherichia coli transcription termination factor rho with RNA. I. Binding stoichiometries and free energies. J Mol Biol. 1988 Feb 20;199(4):609–622. doi: 10.1016/0022-2836(88)90305-1. [DOI] [PubMed] [Google Scholar]
  11. Mott J. E., Grant R. A., Ho Y. S., Platt T. Maximizing gene expression from plasmid vectors containing the lambda PL promoter: strategies for overproducing transcription termination factor rho. Proc Natl Acad Sci U S A. 1985 Jan;82(1):88–92. doi: 10.1073/pnas.82.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Query C. C., Bentley R. C., Keene J. D. A common RNA recognition motif identified within a defined U1 RNA binding domain of the 70K U1 snRNP protein. Cell. 1989 Apr 7;57(1):89–101. doi: 10.1016/0092-8674(89)90175-x. [DOI] [PubMed] [Google Scholar]
  13. Richardson J. P., Conaway R. Ribonucleic acid release activity of transcription termination protein rho is dependent on the hydrolysis of nucleoside triphosphates. Biochemistry. 1980 Sep 2;19(18):4293–4299. doi: 10.1021/bi00559a022. [DOI] [PubMed] [Google Scholar]
  14. Roberts J. W. Termination factor for RNA synthesis. Nature. 1969 Dec 20;224(5225):1168–1174. doi: 10.1038/2241168a0. [DOI] [PubMed] [Google Scholar]
  15. Romaniuk P. J., Uhlenbeck O. C. Nucleoside and nucleotide inactivation of R17 coat protein: evidence for a transient covalent RNA-protein bond. Biochemistry. 1985 Jul 16;24(15):4239–4244. doi: 10.1021/bi00336a064. [DOI] [PubMed] [Google Scholar]
  16. Seifried S. E., Wang Y., von Hippel P. H. Fluorescent modification of the cysteine 202 residue of Escherichia coli transcription termination factor rho. J Biol Chem. 1988 Sep 25;263(27):13511–13514. [PubMed] [Google Scholar]
  17. Shigesada K., Wu C. W. Studies of RNA release reaction catalyzed by E. coli transcription termination factor rho using isolated ternary transcription complexes. Nucleic Acids Res. 1980 Aug 11;8(15):3355–3369. doi: 10.1093/nar/8.15.3355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Starzyk R. M., Koontz S. W., Schimmel P. A covalent adduct between the uracil ring and the active site of an aminoacyl tRNA synthetase. Nature. 1982 Jul 8;298(5870):136–140. doi: 10.1038/298136a0. [DOI] [PubMed] [Google Scholar]
  19. Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES