Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 3;68(Pt 4):m353. doi: 10.1107/S1600536812008719

1-(Ferrocen-1-ylmeth­yl)-3-methyl­imidazol-3-ium hexa­fluorido­phosphate

Vincent O Nyamori a, Siphesihle M Zulu a, Bernard Omondi a,*
PMCID: PMC3343779  PMID: 22589753

Abstract

The crystal structure of the title compound, [Fe(C5H5)(C10H12N2)]PF6, consists of a ferrocene-1-methyl-(3-methyl­imidazolium) cation and a hexa­fluorido­phosphate anion. The ferrocenyl rings are skewed by 6.7 (4)° from the ideal eclipsed conformation. The inter­planar angle between the plane of the substituted cyclo­penta­dienyl ring and that of the imidazole ring is 89.9 (4)°. The crystal packing is stabilized by C—H⋯F hydrogen bonds.

Related literature  

For background to the chemistry of ferrocenes and their potential applications, see: Štěpnička (2008), Kealy & Pauson (1951); Togni & Hayashi (1995). For related work based on ferrocenylimidazolium salts, see: Nyamori et al. (2010a ); Thomas et al. (2000, 2002). For the synthesis, see: Nyamori et al. (2010b ). For related structures, see Nyamori & Bala (2008); Nyamori et al. (2010a ).graphic file with name e-68-0m353-scheme1.jpg

Experimental  

Crystal data  

  • [Fe(C5H5)(C10H12N2)]PF6

  • M r = 426.13

  • Orthorhombic, Inline graphic

  • a = 12.4226 (2) Å

  • b = 13.4414 (2) Å

  • c = 19.2137 (3) Å

  • V = 3208.25 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.11 mm−1

  • T = 100 K

  • 0.27 × 0.17 × 0.11 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.755, T max = 0.888

  • 44208 measured reflections

  • 4041 independent reflections

  • 3747 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.024

  • wR(F 2) = 0.064

  • S = 1.04

  • 4041 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812008719/fj2522sup1.cif

e-68-0m353-sup1.cif (34.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812008719/fj2522Isup2.hkl

e-68-0m353-Isup2.hkl (194.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯F1i 0.95 2.54 3.3249 (15) 140

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the University of KwaZulu-Natal and the National Research Foundation (NRF) for financial support.

supplementary crystallographic information

Comment

The discovery of ferrocene heralded a new era in the realm of organometallic chemistry (Kealy & Pauson, 1951). The ferrocene group has unique electronic properties, such as ability to stabilize carbocations. The titled compound (I) consists of a ferrocenyl moiety linked to an imidazole group via a methylene group. The electronic system is very well conjugated and the compound exhibits resonance structures if in solution. The ferrocenyl moiety represents a quite bulky group with unique spatial requirements due to its sandwich shape, and electronically, the powerful donor capacity of ferrocene is important in the stabilization of highly reactive metal centres and other electroactive species. Some of the important properties that ferrocenyl containing imidazolium salts exhibit that makes their study significant include electronic stabilization of adjacent electron-deficient centres due to participation of the iron atom in the dispersal of the positive charge; the unique steric bulk, chemical stability and reversibility of the ferrocene/ferrocenium redox couple.

The ferrocenyl rings exhibit an eclipsed conformation with a significant staggering angle of 6.7° which is smaller than that of Nyamori & Bala (2008) however, Nyamori et al., (2010a) have also synthesized ferrocenyl moiety with a significantly small staggering angle. The interplanar angle between the plane of the substituted Cp ring and that of the imidazole ring is orthogonal (89.9 (4)°) (Fig 1). In the crystal, a weak C–H···F hydrogen bond (Table 1) connects the cations and the anions.

Experimental

In a two-neck round-bottom flask was added sodium hexafluoridophosphate (0.13 g, 0.76 mmol) and 1-(ferrocenylmethyl)-3-methylimidazolium iodide (0.30 g, 0.74 mmol) in acetone (20 ml). The mixture was stirred under a nitrogen atmosphere for 24 h at room temperature. The reaction mixture was filtered through a plug of celite and the filtrate was then concentrated in vacuo to yield 0.23 g, 72% of an orange crystals identified as 1-(Ferrocenylmethyl)-3-methylimidazole hexafluoridophosphate; mp 66–68 °C; IR (ATR cm_1) 3429, 1624, 1567, 1331, 1150, 812, 619,554, 500, 480; 1H NMR (CDCl3) 9.05 (1H, s, NCH), 7.11 (1H, s, NCH), 7.0868 (1H, s, NCH), 5.22 (2H, s, CH2), 4.39 (2H, t, J 1.8, C5H4), 4.23 (7H, t, J 1.8, C5H4), 4.24 (5H, s, C5H5), 3.94 (3H, s, CH3); 13 C NMR (CDCl3) 136.06, 122.79, 121.23, 78.02, 77.23, 69.97, 69.59, 69.19, 50.18; m/z 197 (2.3%), 198.6 (100%), 199.3 (13.1%), 280.6 (M±PF6, 4.5%); Anal. Calc. for C15H17N2Fe+; [M+]-PF6, 281.07411.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level.

Crystal data

[Fe(C5H5)(C10H12N2)]PF6 F(000) = 1728
Mr = 426.13 Dx = 1.764 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 47745 reflections
a = 12.4226 (2) Å θ = 2.1–28.6°
b = 13.4414 (2) Å µ = 1.11 mm1
c = 19.2137 (3) Å T = 100 K
V = 3208.25 (9) Å3 Block, yellow
Z = 8 0.27 × 0.17 × 0.11 mm

Data collection

Bruker SMART APEXII CCD diffractometer 3747 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
φ and ω scans θmax = 28.6°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −16→16
Tmin = 0.755, Tmax = 0.888 k = −18→17
44208 measured reflections l = −25→25
4041 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0307P)2 + 2.2775P] where P = (Fo2 + 2Fc2)/3
4041 reflections (Δ/σ)max = 0.001
227 parameters Δρmax = 0.46 e Å3
0 restraints Δρmin = −0.36 e Å3

Special details

Experimental. Carbon-bound H-atoms were placed in calculated positions [C—H = 0.98 Å for Me H atoms, 0.99 Å for Methylene H atoms, 0.99 for methine H atoms and 0.95 Å for aromatic H atoms; Uiso(H) = 1.2Ueq(C) (1.5 for Me groups)] and were included in the refinement in the riding model approximation. The N—H H-atom was located in a difference map and freely refined with N—H = 0.88 Å (Uiso(H) = 1.2Ueq(N).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors of P1 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 62 PLAT960_ALERT_3_G Number of Intensities with I. LT. - 2*sig(I) ··· 4 Noted:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.70208 (10) 0.06956 (9) 0.08674 (7) 0.0187 (2)
H1 0.6918 0.0677 0.1383 0.022*
C2 0.63898 (10) 0.01756 (9) 0.03683 (7) 0.0190 (2)
H2 0.5772 −0.0278 0.0471 0.023*
C3 0.67965 (11) 0.04158 (10) −0.03054 (7) 0.0216 (3)
H3 0.6515 0.0158 −0.0758 0.026*
C4 0.76762 (11) 0.10892 (10) −0.02199 (7) 0.0219 (3)
H4 0.8118 0.1387 −0.0602 0.026*
C5 0.78092 (10) 0.12621 (10) 0.05054 (7) 0.0203 (3)
H5 0.8359 0.1708 0.0723 0.024*
C6 0.50453 (10) 0.22435 (9) −0.03703 (7) 0.0163 (2)
H6 0.4707 0.1933 −0.079 0.02*
C7 0.47250 (10) 0.20950 (9) 0.03352 (7) 0.0183 (2)
H7 0.4127 0.1654 0.0497 0.022*
C8 0.54191 (11) 0.26670 (9) 0.07702 (7) 0.0189 (2)
H8 0.5392 0.2697 0.129 0.023*
C9 0.61633 (11) 0.31834 (9) 0.03367 (7) 0.0168 (2)
H9 0.6748 0.364 0.0498 0.02*
C10 0.59352 (10) 0.29181 (9) −0.03694 (6) 0.0144 (2)
C11 0.65066 (11) 0.32967 (9) −0.10021 (7) 0.0178 (2)
H11A 0.7149 0.3681 −0.0859 0.021*
H11B 0.675 0.2728 −0.1289 0.021*
C12 0.55414 (10) 0.37912 (9) −0.20841 (6) 0.0165 (2)
H12 0.5825 0.328 −0.2372 0.02*
C13 0.52134 (10) 0.47496 (9) −0.11803 (7) 0.0174 (2)
H13 0.5234 0.502 −0.0724 0.021*
C14 0.46165 (10) 0.50875 (9) −0.17209 (7) 0.0174 (2)
H14 0.4139 0.5639 −0.1716 0.021*
C15 0.43846 (11) 0.45908 (10) −0.29794 (7) 0.0213 (3)
H15A 0.4663 0.5202 −0.3191 0.032*
H15B 0.3598 0.4628 −0.295 0.032*
H15C 0.4591 0.4018 −0.3265 0.032*
N1 0.57853 (8) 0.39380 (8) −0.14182 (5) 0.0149 (2)
N2 0.48347 (9) 0.44783 (8) −0.22797 (5) 0.0152 (2)
F1 0.68267 (7) 0.32029 (6) 0.25538 (6) 0.0312 (2)
F2 0.83765 (8) 0.29514 (8) 0.31564 (5) 0.0337 (2)
F3 0.78054 (9) 0.34815 (8) 0.15824 (5) 0.0390 (2)
F4 0.93499 (7) 0.32338 (7) 0.21887 (5) 0.0332 (2)
F5 0.80333 (8) 0.20561 (7) 0.21913 (5) 0.0346 (2)
F6 0.81291 (7) 0.43793 (6) 0.25467 (5) 0.0303 (2)
Fe1 0.629560 (14) 0.167551 (12) 0.019064 (9) 0.01225 (6)
P1 0.80910 (3) 0.32180 (2) 0.236862 (17) 0.01482 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0200 (6) 0.0167 (6) 0.0193 (6) 0.0016 (5) −0.0043 (5) 0.0048 (5)
C2 0.0192 (6) 0.0114 (5) 0.0265 (6) 0.0006 (4) −0.0035 (5) 0.0019 (5)
C3 0.0267 (7) 0.0166 (6) 0.0216 (6) 0.0081 (5) −0.0035 (5) −0.0036 (5)
C4 0.0201 (6) 0.0204 (6) 0.0252 (7) 0.0075 (5) 0.0046 (5) 0.0053 (5)
C5 0.0140 (5) 0.0189 (6) 0.0280 (7) 0.0006 (5) −0.0047 (5) 0.0047 (5)
C6 0.0148 (5) 0.0145 (5) 0.0196 (6) 0.0021 (4) −0.0032 (4) 0.0010 (5)
C7 0.0153 (5) 0.0164 (6) 0.0233 (6) 0.0028 (5) 0.0022 (5) 0.0026 (5)
C8 0.0243 (6) 0.0157 (5) 0.0167 (6) 0.0036 (5) 0.0026 (5) −0.0008 (4)
C9 0.0211 (6) 0.0120 (5) 0.0172 (6) 0.0009 (4) −0.0013 (5) −0.0012 (4)
C10 0.0157 (5) 0.0120 (5) 0.0155 (5) 0.0026 (4) −0.0007 (4) 0.0014 (4)
C11 0.0171 (5) 0.0189 (6) 0.0174 (6) 0.0043 (5) 0.0003 (5) 0.0053 (4)
C12 0.0188 (6) 0.0138 (5) 0.0168 (6) −0.0001 (4) 0.0000 (4) 0.0001 (4)
C13 0.0209 (6) 0.0155 (5) 0.0159 (6) 0.0027 (5) 0.0016 (5) 0.0002 (4)
C14 0.0192 (6) 0.0149 (5) 0.0182 (6) 0.0017 (5) 0.0014 (5) 0.0009 (4)
C15 0.0263 (7) 0.0217 (6) 0.0158 (6) 0.0013 (5) −0.0058 (5) 0.0009 (5)
N1 0.0161 (5) 0.0134 (5) 0.0154 (5) 0.0011 (4) 0.0005 (4) 0.0028 (4)
N2 0.0165 (5) 0.0140 (5) 0.0152 (5) −0.0012 (4) −0.0017 (4) 0.0010 (4)
F1 0.0143 (4) 0.0267 (4) 0.0526 (6) −0.0019 (3) −0.0009 (4) 0.0108 (4)
F2 0.0334 (5) 0.0497 (6) 0.0180 (4) −0.0015 (4) −0.0067 (4) 0.0080 (4)
F3 0.0562 (6) 0.0405 (5) 0.0202 (4) −0.0019 (5) −0.0115 (4) 0.0082 (4)
F4 0.0205 (4) 0.0331 (5) 0.0459 (6) 0.0019 (4) 0.0112 (4) 0.0017 (4)
F5 0.0383 (5) 0.0165 (4) 0.0490 (6) 0.0017 (4) −0.0128 (4) −0.0042 (4)
F6 0.0241 (4) 0.0188 (4) 0.0481 (6) −0.0028 (3) −0.0019 (4) −0.0082 (4)
Fe1 0.01293 (10) 0.01083 (9) 0.01299 (9) 0.00042 (6) −0.00162 (6) 0.00074 (6)
P1 0.01470 (15) 0.01456 (14) 0.01521 (15) −0.00112 (11) −0.00222 (11) 0.00146 (11)

Geometric parameters (Å, º)

C1—C2 1.4222 (18) C9—Fe1 2.0527 (12)
C1—C5 1.4223 (18) C9—H9 1
C1—Fe1 2.0585 (12) C10—C11 1.4968 (17)
C1—H1 1 C10—Fe1 2.0367 (12)
C2—C3 1.4267 (19) C11—N1 1.4782 (15)
C2—Fe1 2.0482 (13) C11—H11A 0.99
C2—H2 1 C11—H11B 0.99
C3—C4 1.428 (2) C12—N2 1.3285 (16)
C3—Fe1 2.0403 (13) C12—N1 1.3296 (16)
C3—H3 1 C12—H12 0.95
C4—C5 1.4225 (19) C13—C14 1.3547 (17)
C4—Fe1 2.0456 (13) C13—N1 1.3797 (16)
C4—H4 1 C13—H13 0.95
C5—Fe1 2.0519 (13) C14—N2 1.3772 (16)
C5—H5 1 C14—H14 0.95
C6—C7 1.4269 (18) C15—N2 1.4637 (16)
C6—C10 1.4299 (17) C15—H15A 0.98
C6—Fe1 2.0389 (12) C15—H15B 0.98
C6—H6 1 C15—H15C 0.98
C7—C8 1.4258 (19) F1—P1 1.6106 (9)
C7—Fe1 2.0498 (13) F2—P1 1.5954 (9)
C7—H7 1 F3—P1 1.5917 (9)
C8—C9 1.4249 (18) F4—P1 1.6018 (9)
C8—Fe1 2.0497 (13) F5—P1 1.6001 (9)
C8—H8 1 F6—P1 1.5988 (9)
C9—C10 1.4310 (17)
C2—C1—C5 108.23 (12) N2—C14—H14 126.6
C2—C1—Fe1 69.35 (7) N2—C15—H15A 109.5
C5—C1—Fe1 69.50 (7) N2—C15—H15B 109.5
C2—C1—H1 125.9 H15A—C15—H15B 109.5
C5—C1—H1 125.9 N2—C15—H15C 109.5
Fe1—C1—H1 125.9 H15A—C15—H15C 109.5
C1—C2—C3 107.78 (12) H15B—C15—H15C 109.5
C1—C2—Fe1 70.13 (7) C12—N1—C13 108.59 (10)
C3—C2—Fe1 69.28 (7) C12—N1—C11 124.89 (11)
C1—C2—H2 126.1 C13—N1—C11 126.45 (11)
C3—C2—H2 126.1 C12—N2—C14 108.84 (10)
Fe1—C2—H2 126.1 C12—N2—C15 125.74 (11)
C2—C3—C4 108.06 (12) C14—N2—C15 125.40 (11)
C2—C3—Fe1 69.87 (7) C10—Fe1—C6 41.08 (5)
C4—C3—Fe1 69.74 (8) C10—Fe1—C3 120.05 (5)
C2—C3—H3 126 C6—Fe1—C3 107.22 (5)
C4—C3—H3 126 C10—Fe1—C4 107.24 (5)
Fe1—C3—H3 126 C6—Fe1—C4 125.38 (5)
C5—C4—C3 107.76 (12) C3—Fe1—C4 40.93 (6)
C5—C4—Fe1 69.92 (7) C10—Fe1—C2 155.21 (5)
C3—C4—Fe1 69.34 (8) C6—Fe1—C2 120.01 (5)
C5—C4—H4 126.1 C3—Fe1—C2 40.85 (5)
C3—C4—H4 126.1 C4—Fe1—C2 68.73 (5)
Fe1—C4—H4 126.1 C10—Fe1—C8 68.72 (5)
C1—C5—C4 108.16 (12) C6—Fe1—C8 68.84 (5)
C1—C5—Fe1 70.01 (7) C3—Fe1—C8 162.82 (6)
C4—C5—Fe1 69.45 (7) C4—Fe1—C8 154.87 (6)
C1—C5—H5 125.9 C2—Fe1—C8 125.44 (5)
C4—C5—H5 125.9 C10—Fe1—C7 68.70 (5)
Fe1—C5—H5 125.9 C6—Fe1—C7 40.85 (5)
C7—C6—C10 107.64 (11) C3—Fe1—C7 125.58 (6)
C7—C6—Fe1 69.99 (7) C4—Fe1—C7 162.98 (6)
C10—C6—Fe1 69.38 (7) C2—Fe1—C7 107.61 (5)
C7—C6—H6 126.2 C8—Fe1—C7 40.70 (5)
C10—C6—H6 126.2 C10—Fe1—C5 125.40 (5)
Fe1—C6—H6 126.2 C6—Fe1—C5 162.81 (5)
C8—C7—C6 108.23 (11) C3—Fe1—C5 68.50 (6)
C8—C7—Fe1 69.65 (7) C4—Fe1—C5 40.63 (5)
C6—C7—Fe1 69.17 (7) C2—Fe1—C5 68.40 (5)
C8—C7—H7 125.9 C8—Fe1—C5 120.18 (6)
C6—C7—H7 125.9 C7—Fe1—C5 155.07 (6)
Fe1—C7—H7 125.9 C10—Fe1—C9 40.97 (5)
C9—C8—C7 108.20 (11) C6—Fe1—C9 69.00 (5)
C9—C8—Fe1 69.79 (7) C3—Fe1—C9 155.19 (6)
C7—C8—Fe1 69.65 (7) C4—Fe1—C9 120.01 (6)
C9—C8—H8 125.9 C2—Fe1—C9 162.50 (6)
C7—C8—H8 125.9 C8—Fe1—C9 40.65 (5)
Fe1—C8—H8 125.9 C7—Fe1—C9 68.51 (5)
C8—C9—C10 107.72 (11) C5—Fe1—C9 107.49 (5)
C8—C9—Fe1 69.57 (7) C10—Fe1—C1 162.69 (5)
C10—C9—Fe1 68.92 (7) C6—Fe1—C1 155.08 (5)
C8—C9—H9 126.1 C3—Fe1—C1 68.32 (5)
C10—C9—H9 126.1 C4—Fe1—C1 68.30 (5)
Fe1—C9—H9 126.1 C2—Fe1—C1 40.52 (5)
C6—C10—C9 108.20 (11) C8—Fe1—C1 107.78 (5)
C6—C10—C11 125.54 (11) C7—Fe1—C1 120.46 (5)
C9—C10—C11 126.25 (11) C5—Fe1—C1 40.49 (5)
C6—C10—Fe1 69.54 (7) C9—Fe1—C1 125.48 (5)
C9—C10—Fe1 70.12 (7) F3—P1—F2 179.87 (7)
C11—C10—Fe1 127.13 (9) F3—P1—F6 89.57 (6)
N1—C11—C10 110.49 (10) F2—P1—F6 90.55 (6)
N1—C11—H11A 109.6 F3—P1—F5 90.29 (6)
C10—C11—H11A 109.6 F2—P1—F5 89.58 (6)
N1—C11—H11B 109.6 F6—P1—F5 179.13 (5)
C10—C11—H11B 109.6 F3—P1—F4 90.57 (6)
H11A—C11—H11B 108.1 F2—P1—F4 89.46 (5)
N2—C12—N1 108.65 (11) F6—P1—F4 90.25 (5)
N2—C12—H12 125.7 F5—P1—F4 90.62 (5)
N1—C12—H12 125.7 F3—P1—F1 89.71 (6)
C14—C13—N1 107.04 (11) F2—P1—F1 90.25 (5)
C14—C13—H13 126.5 F6—P1—F1 89.65 (5)
N1—C13—H13 126.5 F5—P1—F1 89.49 (5)
C13—C14—N2 106.90 (11) F4—P1—F1 179.70 (6)
C13—C14—H14 126.6
C5—C1—C2—C3 0.48 (14) C5—C4—Fe1—C3 −119.01 (11)
Fe1—C1—C2—C3 59.27 (9) C5—C4—Fe1—C2 −81.21 (8)
C5—C1—C2—Fe1 −58.79 (9) C3—C4—Fe1—C2 37.80 (8)
C1—C2—C3—C4 −0.30 (15) C5—C4—Fe1—C8 48.21 (15)
Fe1—C2—C3—C4 59.51 (9) C3—C4—Fe1—C8 167.22 (11)
C1—C2—C3—Fe1 −59.80 (9) C5—C4—Fe1—C7 −161.85 (16)
C2—C3—C4—C5 0.00 (15) C3—C4—Fe1—C7 −42.8 (2)
Fe1—C3—C4—C5 59.60 (9) C3—C4—Fe1—C5 119.01 (11)
C2—C3—C4—Fe1 −59.59 (9) C5—C4—Fe1—C9 81.93 (9)
C2—C1—C5—C4 −0.48 (15) C3—C4—Fe1—C9 −159.06 (8)
Fe1—C1—C5—C4 −59.17 (9) C5—C4—Fe1—C1 −37.51 (8)
C2—C1—C5—Fe1 58.70 (9) C3—C4—Fe1—C1 81.50 (8)
C3—C4—C5—C1 0.29 (15) C1—C2—Fe1—C10 166.23 (11)
Fe1—C4—C5—C1 59.52 (9) C3—C2—Fe1—C10 47.29 (15)
C3—C4—C5—Fe1 −59.23 (9) C1—C2—Fe1—C6 −159.41 (8)
C10—C6—C7—C8 −0.54 (14) C3—C2—Fe1—C6 81.65 (9)
Fe1—C6—C7—C8 58.86 (9) C1—C2—Fe1—C3 118.94 (11)
C10—C6—C7—Fe1 −59.39 (8) C1—C2—Fe1—C4 81.07 (8)
C6—C7—C8—C9 0.78 (14) C3—C2—Fe1—C4 −37.87 (8)
Fe1—C7—C8—C9 59.34 (9) C1—C2—Fe1—C8 −75.18 (9)
C6—C7—C8—Fe1 −58.56 (9) C3—C2—Fe1—C8 165.88 (8)
C7—C8—C9—C10 −0.73 (14) C1—C2—Fe1—C7 −116.57 (8)
Fe1—C8—C9—C10 58.53 (8) C3—C2—Fe1—C7 124.49 (8)
C7—C8—C9—Fe1 −59.26 (9) C1—C2—Fe1—C5 37.27 (8)
C7—C6—C10—C9 0.09 (14) C3—C2—Fe1—C5 −81.67 (8)
Fe1—C6—C10—C9 −59.69 (8) C1—C2—Fe1—C9 −42.3 (2)
C7—C6—C10—C11 −178.54 (11) C3—C2—Fe1—C9 −161.25 (16)
Fe1—C6—C10—C11 121.69 (12) C3—C2—Fe1—C1 −118.94 (11)
C7—C6—C10—Fe1 59.77 (8) C9—C8—Fe1—C10 −37.78 (7)
C8—C9—C10—C6 0.39 (14) C7—C8—Fe1—C10 81.67 (8)
Fe1—C9—C10—C6 59.33 (8) C9—C8—Fe1—C6 −82.00 (8)
C8—C9—C10—C11 179.01 (11) C7—C8—Fe1—C6 37.45 (7)
Fe1—C9—C10—C11 −122.06 (12) C9—C8—Fe1—C3 −161.81 (16)
C8—C9—C10—Fe1 −58.94 (9) C7—C8—Fe1—C3 −42.4 (2)
C6—C10—C11—N1 66.58 (15) C9—C8—Fe1—C4 47.57 (15)
C9—C10—C11—N1 −111.80 (14) C7—C8—Fe1—C4 167.01 (11)
Fe1—C10—C11—N1 156.70 (9) C9—C8—Fe1—C2 165.49 (8)
N1—C13—C14—N2 −0.09 (14) C7—C8—Fe1—C2 −75.06 (9)
N2—C12—N1—C13 −0.05 (14) C9—C8—Fe1—C7 −119.45 (11)
N2—C12—N1—C11 176.98 (11) C9—C8—Fe1—C5 81.73 (9)
C14—C13—N1—C12 0.09 (14) C7—C8—Fe1—C5 −158.82 (7)
C14—C13—N1—C11 −176.88 (11) C7—C8—Fe1—C9 119.45 (11)
C10—C11—N1—C12 −123.38 (13) C9—C8—Fe1—C1 124.22 (8)
C10—C11—N1—C13 53.11 (16) C7—C8—Fe1—C1 −116.34 (8)
N1—C12—N2—C14 −0.01 (14) C8—C7—Fe1—C10 −81.71 (8)
N1—C12—N2—C15 178.28 (11) C6—C7—Fe1—C10 38.17 (7)
C13—C14—N2—C12 0.06 (14) C8—C7—Fe1—C6 −119.88 (11)
C13—C14—N2—C15 −178.23 (12) C8—C7—Fe1—C3 165.83 (8)
C9—C10—Fe1—C6 119.29 (11) C6—C7—Fe1—C3 −74.28 (9)
C11—C10—Fe1—C6 −119.72 (14) C8—C7—Fe1—C4 −160.96 (17)
C6—C10—Fe1—C3 81.77 (9) C6—C7—Fe1—C4 −41.1 (2)
C9—C10—Fe1—C3 −158.93 (8) C8—C7—Fe1—C2 124.32 (8)
C11—C10—Fe1—C3 −37.94 (13) C6—C7—Fe1—C2 −115.80 (8)
C6—C10—Fe1—C4 124.51 (8) C6—C7—Fe1—C8 119.88 (11)
C9—C10—Fe1—C4 −116.19 (8) C8—C7—Fe1—C5 47.80 (15)
C11—C10—Fe1—C4 4.80 (12) C6—C7—Fe1—C5 167.69 (11)
C6—C10—Fe1—C2 48.05 (15) C8—C7—Fe1—C9 −37.56 (7)
C9—C10—Fe1—C2 167.34 (12) C6—C7—Fe1—C9 82.32 (8)
C11—C10—Fe1—C2 −71.67 (17) C8—C7—Fe1—C1 81.92 (9)
C6—C10—Fe1—C8 −81.80 (8) C6—C7—Fe1—C1 −158.19 (7)
C9—C10—Fe1—C8 37.50 (8) C1—C5—Fe1—C10 166.27 (7)
C11—C10—Fe1—C8 158.48 (13) C4—C5—Fe1—C10 −74.35 (9)
C6—C10—Fe1—C7 −37.97 (7) C1—C5—Fe1—C6 −160.03 (16)
C9—C10—Fe1—C7 81.33 (8) C4—C5—Fe1—C6 −40.7 (2)
C11—C10—Fe1—C7 −157.68 (12) C1—C5—Fe1—C3 −81.37 (8)
C6—C10—Fe1—C5 165.55 (8) C4—C5—Fe1—C3 38.01 (8)
C9—C10—Fe1—C5 −75.16 (9) C1—C5—Fe1—C4 −119.38 (11)
C11—C10—Fe1—C5 45.83 (13) C1—C5—Fe1—C2 −37.30 (8)
C6—C10—Fe1—C9 −119.29 (11) C4—C5—Fe1—C2 82.08 (9)
C11—C10—Fe1—C9 120.99 (14) C1—C5—Fe1—C8 82.11 (9)
C6—C10—Fe1—C1 −163.26 (16) C4—C5—Fe1—C8 −158.51 (8)
C9—C10—Fe1—C1 −44.0 (2) C1—C5—Fe1—C7 48.13 (16)
C11—C10—Fe1—C1 77.0 (2) C4—C5—Fe1—C7 167.51 (11)
C7—C6—Fe1—C10 −118.80 (10) C1—C5—Fe1—C9 124.63 (8)
C7—C6—Fe1—C3 124.95 (8) C4—C5—Fe1—C9 −115.99 (8)
C10—C6—Fe1—C3 −116.25 (8) C4—C5—Fe1—C1 119.38 (11)
C7—C6—Fe1—C4 166.36 (8) C8—C9—Fe1—C10 119.45 (11)
C10—C6—Fe1—C4 −74.85 (9) C8—C9—Fe1—C6 81.59 (8)
C7—C6—Fe1—C2 82.31 (9) C10—C9—Fe1—C6 −37.87 (7)
C10—C6—Fe1—C2 −158.90 (7) C8—C9—Fe1—C3 167.31 (12)
C7—C6—Fe1—C8 −37.32 (7) C10—C9—Fe1—C3 47.85 (16)
C10—C6—Fe1—C8 81.47 (8) C8—C9—Fe1—C4 −158.77 (8)
C10—C6—Fe1—C7 118.80 (10) C10—C9—Fe1—C4 81.77 (9)
C7—C6—Fe1—C5 −162.29 (16) C8—C9—Fe1—C2 −42.8 (2)
C10—C6—Fe1—C5 −43.5 (2) C10—C9—Fe1—C2 −162.21 (16)
C7—C6—Fe1—C9 −81.03 (8) C10—C9—Fe1—C8 −119.45 (11)
C10—C6—Fe1—C9 37.77 (7) C8—C9—Fe1—C7 37.61 (8)
C7—C6—Fe1—C1 49.47 (15) C10—C9—Fe1—C7 −81.84 (8)
C10—C6—Fe1—C1 168.26 (11) C8—C9—Fe1—C5 −116.25 (8)
C2—C3—Fe1—C10 −159.15 (7) C10—C9—Fe1—C5 124.30 (8)
C4—C3—Fe1—C10 81.69 (9) C8—C9—Fe1—C1 −75.24 (9)
C2—C3—Fe1—C6 −116.24 (8) C10—C9—Fe1—C1 165.30 (7)
C4—C3—Fe1—C6 124.60 (8) C2—C1—Fe1—C10 −160.41 (16)
C2—C3—Fe1—C4 119.16 (11) C5—C1—Fe1—C10 −40.6 (2)
C4—C3—Fe1—C2 −119.16 (11) C2—C1—Fe1—C6 46.28 (16)
C2—C3—Fe1—C8 −42.3 (2) C5—C1—Fe1—C6 166.14 (11)
C4—C3—Fe1—C8 −161.45 (16) C2—C1—Fe1—C3 −38.02 (8)
C2—C3—Fe1—C7 −75.00 (9) C5—C1—Fe1—C3 81.84 (9)
C4—C3—Fe1—C7 165.84 (8) C2—C1—Fe1—C4 −82.22 (9)
C2—C3—Fe1—C5 81.42 (8) C5—C1—Fe1—C4 37.64 (8)
C4—C3—Fe1—C5 −37.74 (8) C5—C1—Fe1—C2 119.86 (11)
C2—C3—Fe1—C9 166.68 (11) C2—C1—Fe1—C8 124.19 (8)
C4—C3—Fe1—C9 47.53 (16) C5—C1—Fe1—C8 −115.95 (8)
C2—C3—Fe1—C1 37.73 (8) C2—C1—Fe1—C7 81.50 (9)
C4—C3—Fe1—C1 −81.43 (8) C5—C1—Fe1—C7 −158.64 (8)
C5—C4—Fe1—C10 124.73 (8) C2—C1—Fe1—C5 −119.86 (11)
C3—C4—Fe1—C10 −116.26 (8) C2—C1—Fe1—C9 165.61 (8)
C5—C4—Fe1—C6 166.34 (7) C5—C1—Fe1—C9 −74.54 (10)
C3—C4—Fe1—C6 −74.65 (9)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C14—H14···F1i 0.95 2.54 3.3249 (15) 140

Symmetry code: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2522).

References

  1. Bruker (2008). APEX2, SAINT-Plus, XPREP and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  4. Kealy, T. J. & Pauson, P. L. (1951). Nature (London), 168, 1039–1040.
  5. Nyamori, V. O. & Bala, M. D. (2008). Acta Cryst. E64, m1376. [DOI] [PMC free article] [PubMed]
  6. Nyamori, V. O., Bala, M. D. & Levendis, D. C. (2010a). Acta Cryst. E66, m412. [DOI] [PMC free article] [PubMed]
  7. Nyamori, V. O., Gumede, M. & Bala, M. D. (2010b). Organomet. Chem. 695, 1126–1132.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Štěpnička, P. (2008). In Ferrocenes: Ligands, Materials and Biomolecules Chichester: John Wiley and Sons.
  10. Thomas, J.-L., Howarth, J., Hanlon, K. & McGuirk, D. (2000). Tetrahedron Lett. 41, 413–416.
  11. Thomas, J.-L., Howarth, J. & Kennedy, A. M. (2002). Molecules, 7, 861–866.
  12. Togni, A. & Hayashi, T. (1995). In Ferrocenes Weinheim: VCH.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812008719/fj2522sup1.cif

e-68-0m353-sup1.cif (34.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812008719/fj2522Isup2.hkl

e-68-0m353-Isup2.hkl (194.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES