Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 3;68(Pt 4):m360–m361. doi: 10.1107/S1600536812008732

Aqua­bis­[2,5-bis­(pyridin-2-yl)-1,3,4-thia­diazole-κ2 N 2,N 3](trifluoro­methane­sulfonato-κO)copper(II) trifluoro­methane­sulfonate

Fouad Bentiss a,*, Moha Outirite b, Michel Lagrenée b,c, Mohamed Saadi d, Lahcen El Ammari d
PMCID: PMC3343784  PMID: 22589758

Abstract

2,5-Bis(pyridin-2-yl)-1,3,4-thia­diazole (denoted L) has been found to act as a bidentate ligand in the monomeric title complex, [Cu(CF3O3S)(C12H8N4S)2(H2O)](CF3O3S). The complex shows a distorted octahedrally coordinated copper(II) cation which is linked to two thia­diazole ligands, one water mol­ecule and one trifluoro­methane­sulfonate anion. The second trifluoro­methane­sulfonate anion does not coordinate the copper(II) cation. Each thia­diazole ligand uses one pyridyl and one thia­diazole N atom for the coordination of copper. The N atom of the second non-coordinating pyridyl substituent is found on the same side of the 1,3,4-thia­diazole ring as the S atom. The trifluoro­methane­sulfonate ions are involved in a three-dimensional network of O—H⋯O hydrogen bonds. C—H⋯N inter­actions also occur.

Related literature  

For the synthesis of the ligand, see: Lebrini et al. (2005). For background to compounds with the same ligand but other metals and other counter-anions, see: Bentiss et al. (2002, 2004, 2011a ,b ); Keij et al. (1984); Zheng et al. (2006).graphic file with name e-68-0m360-scheme1.jpg

Experimental  

Crystal data  

  • [Cu(CF3O3S)(C12H8N4S)2(H2O)](CF3O3S)

  • M r = 860.26

  • Triclinic, Inline graphic

  • a = 8.469 (3) Å

  • b = 11.116 (3) Å

  • c = 18.834 (6) Å

  • α = 92.111 (14)°

  • β = 90.823 (14)°

  • γ = 107.352 (14)°

  • V = 1690.6 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 100 K

  • 0.39 × 0.30 × 0.17 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1995) T min = 0.879, T max = 1.000

  • 12380 measured reflections

  • 6517 independent reflections

  • 5421 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.099

  • S = 1.03

  • 6517 reflections

  • 469 parameters

  • H-atom parameters constrained

  • Δρmax = 1.39 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812008732/im2358sup1.cif

e-68-0m360-sup1.cif (39KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812008732/im2358Isup2.hkl

e-68-0m360-Isup2.hkl (312.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1W⋯O6 0.78 1.95 2.721 (3) 169
O1—H2W⋯O2i 0.80 1.94 2.732 (3) 167
C6—H6⋯N7 0.95 2.33 3.146 (4) 143
C18—H18⋯N3 0.95 2.36 3.174 (4) 143

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

With ligands containing five-membered nitrogen heterocycles, 3 d transition metals such as Ni(II) and Cu(II) have a tendency to form mono- or polynuclear species (Keij et al., 1984). Dinuclear species are of interest due to the potential magnetic coupling of unpaired 3 d electrons via bridging nitrogen containing ligands. Ligands related to 1,2-diazoles with o-pyridine substitution at position 3 and 5, such as 2,5-bis(2-pyridyl)-1,3,4-oxadiazole and thiadiazole, have been of interest for such applications. Indeed, 2,5-bis(2-pyridyl)-1,3,4-thiadiazole can be used in transition metal complexes in association with additional anionic ligands. In the resulting di- and mononuclear complexes, a variety of coordination modes have been observed, of which the dinuclear (N`N``, N2, N``) bridging, the dinuclear (N`N``, N2, N``)2 double bridging and the mononuclear (N`,N`)2 coordination mode are the most common and most important ones (Scheme 1). The latter mode in octahedral complexes is exclusively observed in trans configuration. For the dimeric mode, we have previously reported the synthesis and characterization of the corresponding complexes of Cu(II) and Ni(II) with the 2,5-bis(2-pyridyl)-thiadiazole derivative (bptd) (Bentiss et al., 2004). There are no other reports of the dimeric structures of solid state complexes of this neutral ligand (bptd).

The structures of monomeric complexes of the neutral 2,5-bis(2-pyridyl)-1,3,4-thiadiazole derivative with divalent Zn (chloride and perchlorate), Co (nitrate, perchlorate and tetrafluoborate), Ni (perchlorate and tetrafluoborate), and Cu (nitrate, perchlorate) have been previously reported (Bentiss et al., 2002; Bentiss et al., 2011a; Zheng et al., 2006; Bentiss et al., 2011b). We report here the synthesis and the single-crystal structure of the new monomeric complex formed by 2,5-bis(2-pyridyl)-1,3,4-thiadiazole with copper trifluoromethanesulfonate.

In the new monomeric title complex, the Cu atom is no longer situated on a center of symmetry: its octahedral coordination sphere is built from two crystallographically independent molecules L and two O atoms of different chemical entities: O1 is from a water molecule with Cu1—O1 = 2.259 (2) Å and O4 from one trifluoromethanesulfonate anion with a very long distance Cu1—O4 = 2.540 (3)Å (Fig.1). The axial distortion of the octahedron corresponds to the Jahn-Teller effect typical for Cu2+. While N—Cu—O1 angles range from 88.18 (9)° (N2—Cu—O1) to 94.74 (9)° (N1—Cu—O1), keeping O1 at the axial position on one side of the distorted equatorial plane, the bonded O4 trifluoromethanesulfonate end is located in the opposite axial position, with N—Cu—O4 angles ranging from 85.90 (9)° (N5—Cu—O4) to 89.47 (9)° (N6—Cu—O4).

In this monomeric complex, a completely different ligand configuration is observed compared to our recently reported Co and Ni monomeric complexes of bptd. In both L ligands the non-complexed pyridyl rings are still coplanar with the central thiadiazole heterocycle, while both complexed pyridyl rings are no longer coplanar with the central thiadiazole. In one of the ligands L, topped with the CF3 end of the Cu bound trifluoromethanesulfonate, a small interplanar angle of 3.7 (2) ° of the pyridyl moiety with the thiadiazole ring is observed. On the other hand, in the second ligand this twist is much more pronounced as indicated by an interplanar angle of 12.8 (2)° of the non-coordinated pyridine witrh respect to the remaining planar part of L. This difference cannot be related to any hydrogen bonding interaction with its neighbouring unbound trifluoromethanesulfonate. The trifluoromethanesulfonate ions are involved in an infinite three-dimensional network of O–H···O hydrogen bonds (see Fig.2).

Experimental

2,5-Bis(2-pyridyl)-1,3,4-thiadiazole ligand (noted L) was synthesized as described previously (Lebrini et al., 2005). Cu(O3SCF3)2 (1.5 mmol, 0.54 g) in 8 ml of water was added to (0.42 mmol, 0.1 g) of L (bptd ligand) dissolved in 8 ml of ethanol. The solution was filtered and after 24 h, the blue compound crystallized at room temperature. Yield: 63%. Crystals were washed with water and dried under vacuum. Anal. Calc. for C25H18CuF6N8O7S4: C, 36.27; H, 2.09; N, 13.02; S, 14.91; F, 13.25%. Found: C, 36.32; H, 2.17; N, 12.98; S, 14.88; F, 13.30%.

Refinement

H atoms were located in a difference map and treated as riding with C—H = 0.95 Å for the aromatic CH, with Uiso(H) = 1.2 Ueq(C). The O-bound H atoms were initially also located in a difference map and refined with O—H distance restraints of 0.86 (1). In a the last cycle they were refined using the riding model approximation with Uiso(H) set to 1.2Ueq(O).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing displacement ellipsoids at the 50% probability level. H atoms are represented as small circles. Hydrogen bonds are depicted as dashed lines.

Fig. 2.

Fig. 2.

Plot of the unit cell showing a packing diagram. Hydrogen bonds are depicted as dashed lines.

Crystal data

[Cu(CF3O3S)(C12H8N4S)2(H2O)](CF3O3S) Z = 2
Mr = 860.26 F(000) = 866
Triclinic, P1 Dx = 1.690 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.469 (3) Å Cell parameters from 4698 reflections
b = 11.116 (3) Å θ = 2.5–28.2°
c = 18.834 (6) Å µ = 0.98 mm1
α = 92.111 (14)° T = 100 K
β = 90.823 (14)° Irregular parallelepiped, blue
γ = 107.352 (14)° 0.39 × 0.30 × 0.17 mm
V = 1690.6 (9) Å3

Data collection

Bruker APEXII CCD diffractometer 6517 independent reflections
Radiation source: fine-focus sealed tube 5421 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
φ and ω scans θmax = 26.0°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1995) h = −10→10
Tmin = 0.879, Tmax = 1.000 k = −12→13
12380 measured reflections l = −19→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: difference Fourier map
wR(F2) = 0.099 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0306P)2 + 2.8618P] where P = (Fo2 + 2Fc2)/3
6517 reflections (Δ/σ)max = 0.001
469 parameters Δρmax = 1.39 e Å3
0 restraints Δρmin = −0.41 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.7108 (3) 0.3893 (3) 0.21546 (15) 0.0167 (6)
C2 0.7265 (4) 0.3860 (3) 0.29290 (15) 0.0171 (6)
C3 0.8424 (4) 0.4766 (3) 0.33445 (16) 0.0215 (6)
H3 0.9241 0.5425 0.3132 0.026*
C4 0.8363 (4) 0.4688 (3) 0.40768 (16) 0.0244 (7)
H4 0.9141 0.5290 0.4378 0.029*
C5 0.7151 (4) 0.3720 (3) 0.43558 (16) 0.0227 (7)
H5 0.7062 0.3657 0.4856 0.027*
C6 0.6052 (4) 0.2830 (3) 0.39019 (15) 0.0214 (6)
H6 0.5235 0.2158 0.4104 0.026*
C7 0.6958 (4) 0.4195 (3) 0.09165 (15) 0.0177 (6)
C8 0.7178 (4) 0.4640 (3) 0.01825 (15) 0.0187 (6)
C9 0.6216 (4) 0.3978 (3) −0.03813 (16) 0.0230 (7)
H9 0.5360 0.3219 −0.0309 0.028*
C10 0.6513 (4) 0.4437 (3) −0.10520 (17) 0.0275 (7)
H10 0.5875 0.3995 −0.1452 0.033*
C11 0.7754 (4) 0.5548 (3) −0.11309 (16) 0.0293 (7)
H11 0.7987 0.5887 −0.1587 0.035*
C12 0.8654 (5) 0.6161 (3) −0.05375 (18) 0.0358 (9)
H12 0.9500 0.6931 −0.0600 0.043*
C13 0.2339 (3) −0.0673 (3) 0.27519 (15) 0.0175 (6)
C14 0.2426 (3) −0.0758 (3) 0.19841 (15) 0.0169 (6)
C15 0.1621 (4) −0.1827 (3) 0.15729 (16) 0.0213 (6)
H15 0.1006 −0.2579 0.1786 0.026*
C16 0.1736 (4) −0.1772 (3) 0.08417 (16) 0.0221 (6)
H16 0.1190 −0.2484 0.0541 0.026*
C17 0.2662 (4) −0.0659 (3) 0.05565 (16) 0.0243 (7)
H17 0.2740 −0.0594 0.0056 0.029*
C18 0.3478 (4) 0.0364 (3) 0.10069 (16) 0.0225 (6)
H18 0.4131 0.1116 0.0805 0.027*
C19 0.1962 (4) −0.0710 (3) 0.39831 (15) 0.0192 (6)
C20 0.1420 (4) −0.0996 (3) 0.47119 (15) 0.0211 (6)
C21 0.2257 (4) −0.0288 (3) 0.52982 (17) 0.0256 (7)
H21 0.3220 0.0405 0.5245 0.031*
C22 0.1648 (5) −0.0620 (3) 0.59622 (17) 0.0303 (8)
H22 0.2179 −0.0160 0.6379 0.036*
C23 0.0248 (5) −0.1638 (3) 0.60030 (17) 0.0324 (8)
H23 −0.0199 −0.1893 0.6452 0.039*
C24 −0.0505 (4) −0.2287 (3) 0.53868 (18) 0.0295 (8)
H24 −0.1477 −0.2978 0.5428 0.035*
C25 0.7497 (4) −0.0999 (3) 0.1475 (2) 0.0326 (8)
C26 0.5085 (5) 0.6738 (3) 0.3395 (2) 0.0406 (9)
Cu1 0.46280 (4) 0.16646 (3) 0.245633 (17) 0.01429 (10)
F1 0.8341 (3) −0.1118 (2) 0.09071 (11) 0.0517 (6)
F2 0.5891 (3) −0.1337 (2) 0.12690 (18) 0.0797 (10)
F3 0.7741 (3) −0.18338 (19) 0.19345 (14) 0.0505 (6)
F4 0.5915 (3) 0.6734 (2) 0.40113 (16) 0.0634 (8)
F5 0.5912 (3) 0.6359 (3) 0.28793 (16) 0.0692 (8)
F6 0.5078 (3) 0.7939 (2) 0.32673 (17) 0.0646 (8)
N1 0.6097 (3) 0.2881 (2) 0.31953 (12) 0.0167 (5)
N2 0.5919 (3) 0.3016 (2) 0.18095 (12) 0.0169 (5)
N3 0.5828 (3) 0.3191 (2) 0.10989 (12) 0.0170 (5)
N4 0.8406 (4) 0.5733 (3) 0.01268 (14) 0.0305 (7)
N5 0.3375 (3) 0.0327 (2) 0.17125 (13) 0.0175 (5)
N6 0.3392 (3) 0.0282 (2) 0.31048 (12) 0.0183 (5)
N7 0.3180 (3) 0.0260 (2) 0.38209 (12) 0.0183 (5)
N8 0.0056 (3) −0.1997 (3) 0.47406 (14) 0.0253 (6)
O1 0.2619 (2) 0.26218 (19) 0.24674 (11) 0.0229 (5)
H1W 0.2659 0.3116 0.2778 0.027*
H2W 0.1708 0.2137 0.2402 0.027*
O2 0.9771 (3) 0.0724 (2) 0.21448 (15) 0.0409 (7)
O3 0.8043 (3) 0.1395 (2) 0.12360 (13) 0.0413 (7)
O4 0.6920 (3) 0.0630 (2) 0.23593 (11) 0.0261 (5)
O5 0.2264 (3) 0.5841 (2) 0.27020 (11) 0.0337 (6)
O6 0.3212 (3) 0.4449 (2) 0.35242 (12) 0.0348 (6)
O7 0.2270 (3) 0.6206 (2) 0.39735 (11) 0.0320 (6)
S1 0.82436 (10) 0.50206 (7) 0.16166 (4) 0.02375 (18)
S2 0.09600 (9) −0.16694 (7) 0.32694 (4) 0.02022 (17)
S3 0.81271 (9) 0.06319 (7) 0.18366 (4) 0.01879 (16)
S4 0.29722 (10) 0.56968 (7) 0.33972 (4) 0.02205 (17)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0168 (14) 0.0142 (14) 0.0171 (14) 0.0016 (11) 0.0018 (11) 0.0011 (11)
C2 0.0179 (15) 0.0169 (14) 0.0171 (14) 0.0061 (12) −0.0003 (11) 0.0011 (11)
C3 0.0207 (15) 0.0187 (15) 0.0212 (15) 0.0002 (12) −0.0043 (12) −0.0002 (12)
C4 0.0261 (17) 0.0230 (16) 0.0214 (16) 0.0041 (13) −0.0088 (13) −0.0055 (13)
C5 0.0234 (16) 0.0270 (16) 0.0164 (14) 0.0061 (13) −0.0014 (12) −0.0029 (12)
C6 0.0224 (16) 0.0238 (16) 0.0165 (14) 0.0048 (13) 0.0015 (12) −0.0017 (12)
C7 0.0184 (15) 0.0182 (14) 0.0157 (14) 0.0044 (12) −0.0003 (11) −0.0016 (11)
C8 0.0232 (16) 0.0176 (14) 0.0168 (14) 0.0077 (12) 0.0061 (12) 0.0047 (11)
C9 0.0223 (16) 0.0213 (15) 0.0242 (16) 0.0052 (13) 0.0001 (13) −0.0029 (12)
C10 0.0335 (19) 0.0321 (18) 0.0189 (15) 0.0133 (15) −0.0022 (13) −0.0009 (13)
C11 0.040 (2) 0.0361 (19) 0.0143 (15) 0.0137 (16) 0.0014 (14) 0.0096 (13)
C12 0.041 (2) 0.0284 (18) 0.0277 (18) −0.0062 (16) 0.0045 (15) 0.0128 (15)
C13 0.0165 (14) 0.0157 (14) 0.0198 (15) 0.0033 (12) 0.0051 (12) 0.0044 (11)
C14 0.0137 (14) 0.0175 (14) 0.0190 (14) 0.0039 (11) 0.0025 (11) −0.0010 (11)
C15 0.0187 (15) 0.0179 (15) 0.0243 (16) 0.0007 (12) 0.0020 (12) −0.0002 (12)
C16 0.0199 (15) 0.0189 (15) 0.0230 (15) 0.0002 (12) −0.0032 (12) −0.0069 (12)
C17 0.0243 (16) 0.0276 (17) 0.0180 (15) 0.0037 (13) −0.0024 (12) −0.0014 (13)
C18 0.0228 (16) 0.0224 (16) 0.0187 (15) 0.0012 (13) −0.0012 (12) 0.0034 (12)
C19 0.0218 (15) 0.0170 (14) 0.0192 (15) 0.0060 (12) 0.0035 (12) 0.0019 (11)
C20 0.0263 (16) 0.0243 (16) 0.0176 (15) 0.0142 (13) 0.0090 (12) 0.0075 (12)
C21 0.0258 (17) 0.0215 (16) 0.0285 (17) 0.0049 (13) 0.0047 (14) 0.0044 (13)
C22 0.044 (2) 0.0307 (18) 0.0189 (16) 0.0158 (16) 0.0018 (15) −0.0017 (13)
C23 0.046 (2) 0.0355 (19) 0.0222 (17) 0.0198 (17) 0.0181 (15) 0.0139 (15)
C24 0.0293 (18) 0.0267 (17) 0.0341 (19) 0.0086 (15) 0.0164 (15) 0.0119 (14)
C25 0.0199 (17) 0.0327 (19) 0.045 (2) 0.0097 (14) −0.0067 (15) −0.0156 (16)
C26 0.030 (2) 0.030 (2) 0.065 (3) 0.0115 (16) 0.0039 (19) 0.0100 (18)
Cu1 0.01451 (18) 0.01443 (18) 0.01021 (17) −0.00137 (13) 0.00210 (13) 0.00019 (13)
F1 0.0661 (16) 0.0668 (16) 0.0353 (12) 0.0430 (13) −0.0024 (11) −0.0231 (11)
F2 0.0279 (13) 0.0601 (17) 0.146 (3) 0.0165 (12) −0.0325 (15) −0.0682 (18)
F3 0.0520 (14) 0.0250 (11) 0.0757 (17) 0.0113 (10) 0.0231 (12) 0.0097 (11)
F4 0.0368 (14) 0.0513 (15) 0.097 (2) 0.0078 (12) −0.0289 (14) −0.0069 (14)
F5 0.0514 (16) 0.0765 (19) 0.096 (2) 0.0380 (14) 0.0465 (15) 0.0410 (16)
F6 0.0356 (13) 0.0272 (12) 0.128 (3) 0.0030 (10) 0.0041 (14) 0.0199 (14)
N1 0.0175 (12) 0.0163 (12) 0.0154 (12) 0.0039 (10) 0.0006 (10) −0.0015 (9)
N2 0.0166 (12) 0.0171 (12) 0.0158 (12) 0.0033 (10) 0.0008 (10) 0.0013 (10)
N3 0.0162 (12) 0.0186 (12) 0.0154 (12) 0.0036 (10) 0.0035 (10) 0.0036 (10)
N4 0.0368 (17) 0.0254 (15) 0.0197 (14) −0.0056 (12) −0.0015 (12) 0.0033 (11)
N5 0.0138 (12) 0.0168 (12) 0.0204 (13) 0.0022 (10) 0.0020 (10) 0.0003 (10)
N6 0.0182 (13) 0.0205 (13) 0.0149 (12) 0.0034 (10) 0.0041 (10) 0.0016 (10)
N7 0.0195 (13) 0.0208 (13) 0.0144 (12) 0.0051 (10) 0.0056 (10) 0.0033 (10)
N8 0.0257 (14) 0.0264 (14) 0.0241 (14) 0.0078 (12) 0.0076 (11) 0.0039 (11)
O1 0.0169 (11) 0.0192 (11) 0.0298 (12) 0.0019 (9) 0.0015 (9) −0.0042 (9)
O2 0.0171 (12) 0.0361 (14) 0.0670 (18) 0.0071 (11) −0.0103 (12) −0.0199 (13)
O3 0.0530 (17) 0.0461 (16) 0.0358 (14) 0.0286 (13) 0.0241 (12) 0.0165 (12)
O4 0.0288 (12) 0.0361 (13) 0.0177 (11) 0.0163 (10) 0.0043 (9) 0.0006 (9)
O5 0.0500 (16) 0.0384 (14) 0.0158 (11) 0.0187 (12) −0.0012 (10) −0.0026 (10)
O6 0.0509 (16) 0.0250 (12) 0.0297 (13) 0.0135 (11) −0.0041 (11) 0.0005 (10)
O7 0.0366 (14) 0.0455 (15) 0.0162 (11) 0.0165 (12) 0.0027 (10) −0.0048 (10)
S1 0.0251 (4) 0.0207 (4) 0.0170 (4) −0.0060 (3) 0.0001 (3) 0.0026 (3)
S2 0.0211 (4) 0.0172 (4) 0.0192 (4) 0.0004 (3) 0.0049 (3) 0.0025 (3)
S3 0.0135 (3) 0.0188 (4) 0.0229 (4) 0.0035 (3) 0.0007 (3) −0.0032 (3)
S4 0.0304 (4) 0.0206 (4) 0.0154 (4) 0.0085 (3) −0.0008 (3) −0.0021 (3)

Geometric parameters (Å, º)

C1—N2 1.317 (4) C18—H18 0.9500
C1—C2 1.465 (4) C19—N7 1.300 (4)
C1—S1 1.711 (3) C19—C20 1.469 (4)
C2—N1 1.352 (4) C19—S2 1.728 (3)
C2—C3 1.386 (4) C20—N8 1.348 (4)
C3—C4 1.386 (4) C20—C21 1.386 (4)
C3—H3 0.9500 C21—C22 1.380 (4)
C4—C5 1.374 (4) C21—H21 0.9500
C4—H4 0.9500 C22—C23 1.379 (5)
C5—C6 1.393 (4) C22—H22 0.9500
C5—H5 0.9500 C23—C24 1.384 (5)
C6—N1 1.335 (4) C23—H23 0.9500
C6—H6 0.9500 C24—N8 1.328 (4)
C7—N3 1.296 (4) C24—H24 0.9500
C7—C8 1.481 (4) C25—F1 1.319 (4)
C7—S1 1.743 (3) C25—F2 1.346 (4)
C8—N4 1.352 (4) C25—F3 1.350 (4)
C8—C9 1.376 (4) C25—S3 1.832 (3)
C9—C10 1.378 (4) C26—F5 1.333 (5)
C9—H9 0.9500 C26—F4 1.349 (5)
C10—C11 1.377 (5) C26—F6 1.367 (4)
C10—H10 0.9500 C26—S4 1.818 (4)
C11—C12 1.380 (5) Cu1—N1 2.030 (2)
C11—H11 0.9500 Cu1—N2 2.032 (2)
C12—N4 1.352 (4) Cu1—N5 2.040 (2)
C12—H12 0.9500 Cu1—N6 2.041 (2)
C13—N6 1.315 (4) Cu1—O1 2.259 (2)
C13—C14 1.450 (4) N2—N3 1.364 (3)
C13—S2 1.698 (3) N6—N7 1.363 (3)
C14—N5 1.357 (4) O1—H1W 0.7805
C14—C15 1.382 (4) O1—H2W 0.8032
C15—C16 1.385 (4) O2—S3 1.474 (2)
C15—H15 0.9500 O3—S3 1.452 (3)
C16—C17 1.384 (4) O4—S3 1.429 (2)
C16—H16 0.9500 O5—S4 1.466 (2)
C17—C18 1.390 (4) O6—S4 1.487 (2)
C17—H17 0.9500 O7—S4 1.424 (2)
C18—N5 1.334 (4)
N2—C1—C2 119.3 (3) C23—C22—H22 121.0
N2—C1—S1 113.2 (2) C21—C22—H22 121.0
C2—C1—S1 127.4 (2) C22—C23—C24 119.7 (3)
N1—C2—C3 123.8 (3) C22—C23—H23 120.1
N1—C2—C1 112.3 (2) C24—C23—H23 120.1
C3—C2—C1 123.9 (3) N8—C24—C23 123.7 (3)
C2—C3—C4 118.5 (3) N8—C24—H24 118.2
C2—C3—H3 120.8 C23—C24—H24 118.2
C4—C3—H3 120.8 F1—C25—F2 106.9 (3)
C5—C4—C3 118.4 (3) F1—C25—F3 105.8 (3)
C5—C4—H4 120.8 F2—C25—F3 109.4 (3)
C3—C4—H4 120.8 F1—C25—S3 111.3 (3)
C4—C5—C6 119.7 (3) F2—C25—S3 109.5 (2)
C4—C5—H5 120.1 F3—C25—S3 113.6 (2)
C6—C5—H5 120.1 F5—C26—F4 107.1 (3)
N1—C6—C5 122.9 (3) F5—C26—F6 108.1 (3)
N1—C6—H6 118.6 F4—C26—F6 109.7 (3)
C5—C6—H6 118.6 F5—C26—S4 109.7 (3)
N3—C7—C8 124.4 (3) F4—C26—S4 112.2 (3)
N3—C7—S1 114.4 (2) F6—C26—S4 109.8 (2)
C8—C7—S1 121.2 (2) N1—Cu1—N2 80.50 (10)
N4—C8—C9 124.2 (3) N1—Cu1—N5 172.75 (10)
N4—C8—C7 113.7 (3) N2—Cu1—N5 99.89 (10)
C9—C8—C7 122.1 (3) N1—Cu1—N6 99.32 (10)
C8—C9—C10 118.9 (3) N2—Cu1—N6 178.16 (10)
C8—C9—H9 120.6 N5—Cu1—N6 80.05 (10)
C10—C9—H9 120.6 N1—Cu1—O1 94.74 (9)
C11—C10—C9 118.6 (3) N2—Cu1—O1 88.18 (9)
C11—C10—H10 120.7 N5—Cu1—O1 92.51 (9)
C9—C10—H10 120.7 N6—Cu1—O1 93.66 (9)
C10—C11—C12 119.0 (3) C6—N1—C2 116.7 (2)
C10—C11—H11 120.5 C6—N1—Cu1 128.3 (2)
C12—C11—H11 120.5 C2—N1—Cu1 115.00 (18)
N4—C12—C11 123.9 (3) C1—N2—N3 114.0 (2)
N4—C12—H12 118.0 C1—N2—Cu1 112.38 (19)
C11—C12—H12 118.0 N3—N2—Cu1 133.64 (18)
N6—C13—C14 118.8 (2) C7—N3—N2 111.5 (2)
N6—C13—S2 114.3 (2) C8—N4—C12 115.3 (3)
C14—C13—S2 126.9 (2) C18—N5—C14 117.4 (2)
N5—C14—C15 123.6 (3) C18—N5—Cu1 127.9 (2)
N5—C14—C13 112.7 (2) C14—N5—Cu1 114.52 (19)
C15—C14—C13 123.6 (3) C13—N6—N7 113.2 (2)
C14—C15—C16 118.2 (3) C13—N6—Cu1 112.52 (19)
C14—C15—H15 120.9 N7—N6—Cu1 132.57 (19)
C16—C15—H15 120.9 C19—N7—N6 110.9 (2)
C17—C16—C15 118.8 (3) C24—N8—C20 115.7 (3)
C17—C16—H16 120.6 Cu1—O1—H1W 116.9
C15—C16—H16 120.6 Cu1—O1—H2W 113.1
C16—C17—C18 119.6 (3) H1W—O1—H2W 112.6
C16—C17—H17 120.2 C1—S1—C7 86.88 (14)
C18—C17—H17 120.2 C13—S2—C19 86.41 (14)
N5—C18—C17 122.3 (3) O4—S3—O3 113.60 (14)
N5—C18—H18 118.8 O4—S3—O2 113.34 (15)
C17—C18—H18 118.8 O3—S3—O2 118.12 (17)
N7—C19—C20 124.1 (3) O4—S3—C25 103.53 (15)
N7—C19—S2 115.2 (2) O3—S3—C25 105.14 (17)
C20—C19—S2 120.7 (2) O2—S3—C25 100.60 (15)
N8—C20—C21 124.8 (3) O7—S4—O5 113.30 (14)
N8—C20—C19 113.1 (3) O7—S4—O6 114.47 (15)
C21—C20—C19 122.1 (3) O5—S4—O6 116.62 (14)
C22—C21—C20 118.0 (3) O7—S4—C26 103.02 (17)
C22—C21—H21 121.0 O5—S4—C26 104.58 (18)
C20—C21—H21 121.0 O6—S4—C26 102.59 (16)
C23—C22—C21 118.1 (3)
N2—C1—C2—N1 −0.2 (4) C1—N2—N3—C7 0.4 (3)
S1—C1—C2—N1 175.6 (2) Cu1—N2—N3—C7 −178.3 (2)
N2—C1—C2—C3 −177.1 (3) C9—C8—N4—C12 −0.1 (5)
S1—C1—C2—C3 −1.2 (4) C7—C8—N4—C12 179.3 (3)
N1—C2—C3—C4 −1.7 (5) C11—C12—N4—C8 −0.6 (6)
C1—C2—C3—C4 174.8 (3) C17—C18—N5—C14 −0.3 (4)
C2—C3—C4—C5 −0.3 (5) C17—C18—N5—Cu1 174.3 (2)
C3—C4—C5—C6 1.7 (5) C15—C14—N5—C18 2.4 (4)
C4—C5—C6—N1 −1.2 (5) C13—C14—N5—C18 −177.2 (3)
N3—C7—C8—N4 177.9 (3) C15—C14—N5—Cu1 −172.9 (2)
S1—C7—C8—N4 −1.8 (4) C13—C14—N5—Cu1 7.5 (3)
N3—C7—C8—C9 −2.6 (5) N2—Cu1—N5—C18 2.3 (3)
S1—C7—C8—C9 177.6 (2) N6—Cu1—N5—C18 −175.8 (3)
N4—C8—C9—C10 0.7 (5) O1—Cu1—N5—C18 90.9 (3)
C7—C8—C9—C10 −178.7 (3) N2—Cu1—N5—C14 177.03 (19)
C8—C9—C10—C11 −0.6 (5) N6—Cu1—N5—C14 −1.1 (2)
C9—C10—C11—C12 0.0 (5) O1—Cu1—N5—C14 −94.4 (2)
C10—C11—C12—N4 0.6 (6) C14—C13—N6—N7 179.7 (2)
N6—C13—C14—N5 −13.6 (4) S2—C13—N6—N7 1.2 (3)
S2—C13—C14—N5 164.6 (2) C14—C13—N6—Cu1 12.6 (3)
N6—C13—C14—C15 166.7 (3) S2—C13—N6—Cu1 −165.88 (14)
S2—C13—C14—C15 −15.0 (4) N1—Cu1—N6—C13 −178.8 (2)
N5—C14—C15—C16 −2.7 (5) N5—Cu1—N6—C13 −6.2 (2)
C13—C14—C15—C16 176.9 (3) O1—Cu1—N6—C13 85.7 (2)
C14—C15—C16—C17 0.7 (4) N1—Cu1—N6—N7 17.3 (3)
C15—C16—C17—C18 1.3 (5) N5—Cu1—N6—N7 −170.0 (3)
C16—C17—C18—N5 −1.5 (5) O1—Cu1—N6—N7 −78.1 (3)
N7—C19—C20—N8 175.3 (3) C20—C19—N7—N6 −179.8 (3)
S2—C19—C20—N8 −3.7 (4) S2—C19—N7—N6 −0.7 (3)
N7—C19—C20—C21 −4.8 (5) C13—N6—N7—C19 −0.4 (3)
S2—C19—C20—C21 176.1 (2) Cu1—N6—N7—C19 163.4 (2)
N8—C20—C21—C22 −0.6 (5) C23—C24—N8—C20 −1.2 (5)
C19—C20—C21—C22 179.5 (3) C21—C20—N8—C24 1.1 (5)
C20—C21—C22—C23 0.2 (5) C19—C20—N8—C24 −179.0 (3)
C21—C22—C23—C24 −0.3 (5) N2—C1—S1—C7 0.4 (2)
C22—C23—C24—N8 0.9 (5) C2—C1—S1—C7 −175.7 (3)
C5—C6—N1—C2 −0.8 (4) N3—C7—S1—C1 −0.1 (2)
C5—C6—N1—Cu1 179.1 (2) C8—C7—S1—C1 179.6 (3)
C3—C2—N1—C6 2.3 (4) N6—C13—S2—C19 −1.3 (2)
C1—C2—N1—C6 −174.6 (3) C14—C13—S2—C19 −179.6 (3)
C3—C2—N1—Cu1 −177.6 (2) N7—C19—S2—C13 1.1 (2)
C1—C2—N1—Cu1 5.5 (3) C20—C19—S2—C13 −179.8 (3)
N2—Cu1—N1—C6 173.7 (3) F1—C25—S3—O4 170.5 (2)
N6—Cu1—N1—C6 −8.2 (3) F2—C25—S3—O4 52.5 (3)
O1—Cu1—N1—C6 86.3 (3) F3—C25—S3—O4 −70.1 (3)
N2—Cu1—N1—C2 −6.5 (2) F1—C25—S3—O3 51.1 (3)
N6—Cu1—N1—C2 171.7 (2) F2—C25—S3—O3 −66.9 (3)
O1—Cu1—N1—C2 −93.8 (2) F3—C25—S3—O3 170.4 (2)
C2—C1—N2—N3 175.9 (2) F1—C25—S3—O2 −72.1 (3)
S1—C1—N2—N3 −0.5 (3) F2—C25—S3—O2 169.9 (3)
C2—C1—N2—Cu1 −5.1 (3) F3—C25—S3—O2 47.2 (3)
S1—C1—N2—Cu1 178.51 (13) F5—C26—S4—O7 179.2 (3)
N1—Cu1—N2—C1 6.1 (2) F4—C26—S4—O7 60.3 (3)
N5—Cu1—N2—C1 −166.6 (2) F6—C26—S4—O7 −62.1 (3)
O1—Cu1—N2—C1 101.2 (2) F5—C26—S4—O5 −62.1 (3)
N1—Cu1—N2—N3 −175.2 (3) F4—C26—S4—O5 178.9 (3)
N5—Cu1—N2—N3 12.2 (3) F6—C26—S4—O5 56.5 (3)
O1—Cu1—N2—N3 −80.0 (3) F5—C26—S4—O6 60.0 (3)
C8—C7—N3—N2 −179.9 (3) F4—C26—S4—O6 −58.9 (3)
S1—C7—N3—N2 −0.1 (3) F6—C26—S4—O6 178.7 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1W···O6 0.78 1.95 2.721 (3) 169
O1—H2W···O2i 0.80 1.94 2.732 (3) 167
C6—H6···N7 0.95 2.33 3.146 (4) 143
C18—H18···N3 0.95 2.36 3.174 (4) 143

Symmetry code: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2358).

References

  1. Bentiss, F., Capet, F., Lagrenée, M., Saadi, M. & El Ammari, L. (2011a). Acta Cryst. E67, m1052–m1053. [DOI] [PMC free article] [PubMed]
  2. Bentiss, F., Capet, F., Lagrenée, M., Saadi, M. & El Ammari, L. (2011b). Acta Cryst. E67, m834–m835. [DOI] [PMC free article] [PubMed]
  3. Bentiss, F., Lagrenée, M., Vezin, H., Wignacourt, J. P. & Holt, E. M. (2004). Polyhedron, 23, 1903—1907. [DOI] [PubMed]
  4. Bentiss, F., Lagrenée, M., Wignacourt, J. P. & Holt, E. M. (2002). Polyhedron, 21, 403—408.
  5. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  9. Keij, F. S., de Graaff, R. A. G., Haasnoot, J. G. & Reedijk, J. (1984). J. Chem. Soc. Dalton Trans. pp. 2093–2097.
  10. Lebrini, M., Bentiss, F. & Lagrenée, M. (2005). J. Heterocycl. Chem. 42, 991–994.
  11. Sheldrick, G. M. (1995). SADABS University of Göttingen, Germany.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Zheng, X.-F., Wan, X.-S., Liu, W., Niu, C.-Y. & Kou, C.-H. (2006). Z. Kristallogr. 221, 543–544.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812008732/im2358sup1.cif

e-68-0m360-sup1.cif (39KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812008732/im2358Isup2.hkl

e-68-0m360-Isup2.hkl (312.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES