Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 3;68(Pt 4):m365–m366. doi: 10.1107/S1600536812008501

catena-Poly[[[aqua­manganese(III)]-μ-(E)-5-bromo-N-[2-(5-bromo-2-oxidobenzyl­idene­amino)-4-nitro­phen­yl]-2-oxidobenzamidato] N,N-dimethyl­fomamide monosolvate]

Abeer Mohamed Farag a, Teoh Siang Guan a, Hasnah Osman a, Madhukar Hemamalini b, Hoong-Kun Fun b,*,
PMCID: PMC3343787  PMID: 22589761

Abstract

The asymmetric unit of the title complex, {[Mn(C20H10Br2N3O5)(H2O)]·(CH3)2NCHO}n, consists of one MnIII ion, one (E)-5-bromo-N-[2-(5-bromo-2-oxidobenzyl­idene­amino)-4-nitro­phen­yl]-2-oxidobenzamidate ligand (Schiff base), one water mol­ecule and an N,N-dimethyl­formamide mol­ecule. The coordination geometry around the MnIII ion is a distorted octa­hedron, being surrounded by two O and two N atoms from the Schiff base, which are positioned in the equatorial plane. The water mol­ecule and the O atom of the carbonyl group from the adjacent MnIII complex are situated at the axial positions, leading to a polymeric chain along the c axis. In the crystal, the complex and N,N-dimethyl­formamide mol­ecules are connected via O—H⋯O, C—H⋯O and C—H⋯Br hydrogen bonds, forming a three-dimensional network.

Related literature  

For details of the coordination chemistry and biological importance of manganese, see: Maneiro et al. (2003); Chandra et al. (2009); Chrisianson & Cox (1999); Ni et al. (2009); Zhang et al. (2005); Huh & Lee (2008); Pastoriza-Santos & Liz-Marzań (2009). For related structures, see: Su & Xu (2005); Ma et al. (2004). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-68-0m365-scheme1.jpg

Experimental  

Crystal data  

  • [Mn(C20H10Br2N3O5)(H2O)]·C3H7NO

  • M r = 678.18

  • Monoclinic, Inline graphic

  • a = 11.0746 (6) Å

  • b = 24.9781 (13) Å

  • c = 9.5563 (5) Å

  • β = 114.658 (1)°

  • V = 2402.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.93 mm−1

  • T = 100 K

  • 0.52 × 0.17 × 0.11 mm

Data collection  

  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.234, T max = 0.672

  • 27005 measured reflections

  • 8188 independent reflections

  • 6617 reflections with I > 2σ(I)

  • R int = 0.032

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.085

  • S = 1.02

  • 8188 reflections

  • 344 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.85 e Å−3

  • Δρmin = −0.62 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I, an. DOI: 10.1107/S1600536812008501/is5080sup1.cif

e-68-0m365-sup1.cif (33.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812008501/is5080Isup2.hkl

e-68-0m365-Isup2.hkl (392.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W2⋯O5i 0.73 (4) 2.03 (4) 2.736 (2) 163 (4)
O1W—H2W2⋯O1ii 0.77 (3) 2.55 (3) 3.178 (2) 140 (3)
O1W—H2W2⋯O2ii 0.77 (3) 2.19 (3) 2.890 (2) 153 (3)
C2—H2⋯O5iii 0.93 2.42 3.351 (2) 175
C5—H5⋯O4iv 0.93 2.49 3.395 (3) 166
C7—H7⋯O3iv 0.93 2.60 3.509 (2) 167
C18—H18⋯Br2v 0.93 2.83 3.449 (2) 125
C23—H23A⋯O5vi 0.96 2.40 3.350 (3) 170

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

AMF, TSG and HO thank the Malaysian Government and Universiti Sains Malaysia (USM) for the RU research grant (1001/PKIMIA/815002). AMF thanks Naser Taha and Hema for their help. HKF and MH thanks the Malaysian Government and USM for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks USM for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

In recent years, the coordination chemistry of manganese has been intensively studied due to its presence in the active sites of some enzymes that participate in the chemistry of reactive oxygen species, such as the participation of Mn(II) complexes in peroxidase activity (Maneiro et al., 2003), antipathogenic activity (Chandra et al., 2009) and as essential cofactors in metalloenzymes (Chrisianson & Cox, 1999). X-Ray crystallography has shown a quasi- two-coordinate strongly bent geometry with Mn, which has an almost linear geometry with a wide N—Mn—N angle of 176.1° (Ni et al., 2009). Octahedral coordination is completed by N4O2 ligands (Zhang et al., 2005). The reaction system (solvent composition and reaction temperature) may cause dramatic changes in the structures. The preparation of the polymer results in the introduction of guest molecules such as DMF into its empty channels by the use of mixed solvents DMF-EtOH-H2O under hydro(solvo)thermal conditions (Huh & Lee, 2008). The mechanism of oxidation by DMF have been proposed by Pastoriza-Santos & Liz-Marzań (2009). Due to these interesting features, the title compound was synthesized and its crystal structure presented here.

The asymmetric unit of the title polymeric complex, consisting of one Mn (III) ion, one (E)-5-bromo-N-(2- (5-bromo-2-hydroxybenzylideneamino)-4-nitrophenyl)-2-hydroxybenzamide (Schiff base), one water molecule and a dimethylformamide solvate molecule is shown in Fig. 1. The coordination geometry around Mn (III) is a distorted octahedron, with the Mn (III) ion being surrounded by two O and two N atoms from the Schiff base which are positioned in the equatorial plane. The water molecule and an atom from a carbonyl group are situated in the axial positions. The carbonyl groups bridge the Mn (III) ions, leading to polymeric chains along the c-axis (Fig. 2). The bond lengths are Mn1—O2 = 1.8557 (13); Mn1—O1 = 1.8875 (13); Mn1—N2 = 1.9750 (15); Mn1—N1 = 1.9782 (15); Mn1—O1W =2.2431(15; Mn1—O6 = 2.3448 (14) Å. All bond lengths are in agreement with those in the related structures (Su & Xu, 2005; Ma et al., 2004). In the crystal, (Fig. 3), the complexes are connected with the solvent molecules via O—H···O, C—H···O and C—H···Br hydrogen bonds (Table 1) to form a three-dimensional network.

Experimental

To the solution of 4-nitrobenzene-1,2-diamine (0.306 g, 2 mmol) in ethanol (30 mL) was added 5-bromo-2-hydroxybenzaldehyde (0.804 g, 4 mmol), after which the colour of solution became orange. The mixture was refluxed with stirring for three hours. On adding manganese(II) chloride (0.395 g, 2 mmol), followed by triethylamine (500 mL, 3.6 mmol), a brown precipitate was formed. The mixture was stirred with reflux for three hours. The precipitate, obtained by filtration, was washed by ethanol (5 mL) and dried, affording the title compound (87.33 % yield). Brown block-shaped single crystals suitable for X-ray structure determination were obtained from DMF: ethanol mixture (2:8) with decomposition pt. >340 °C. IR spectroscopy (KBr): ν = 3370 (-OH), 1612 (C═N), 1335 (NO2), 639 (M–N), 480 (M–O) cm-1. Anal. Calcd (found) for [C20H15Br2N3O6Mn].C3H7NO: C 39.50 (39.55), H 2.49 (2.11), N 6.91 (6.55), Mn 9.03 (8.66). MASS Calcd (found) m/z: [605.87 - 2H2O]+ = 569.87 (571.9).

Refinement

Atoms H1W2 and H2W2 were located from a difference Fourier map and refined freely [O—H = 0.72 (4) and 0.77 (3) Å]. The remaining H atoms were positioned geometrically [C—H = 0.93–0.96 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups. The highest residual electron density peak is located at 0.75 Å from atom Br1 and the deepest hole is located at 0.66 Å from atom Br2.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

: The polymeric chain of the title compound along the c-axis. H atoms and solvent molecules omitted for clarity.

Fig. 3.

Fig. 3.

The crystal packing of the title compound, showing a 3D molecular network.

Crystal data

[Mn(C20H10Br2N3O5)(H2O)]·C3H7NO F(000) = 1344
Mr = 678.18 Dx = 1.875 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 7902 reflections
a = 11.0746 (6) Å θ = 3.2–31.8°
b = 24.9781 (13) Å µ = 3.93 mm1
c = 9.5563 (5) Å T = 100 K
β = 114.658 (1)° Block, brown
V = 2402.4 (2) Å3 0.52 × 0.17 × 0.11 mm
Z = 4

Data collection

Bruker APEXII DUO CCD area-detector diffractometer 8188 independent reflections
Radiation source: fine-focus sealed tube 6617 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.032
φ and ω scans θmax = 31.8°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −16→16
Tmin = 0.234, Tmax = 0.672 k = −36→37
27005 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.041P)2 + 1.7977P] where P = (Fo2 + 2Fc2)/3
8188 reflections (Δ/σ)max = 0.003
344 parameters Δρmax = 1.85 e Å3
0 restraints Δρmin = −0.62 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn1 0.32207 (3) 0.285186 (10) 1.10714 (3) 0.01283 (6)
Br1 0.39872 (2) −0.002567 (8) 1.29527 (2) 0.02540 (6)
Br2 0.00337 (3) 0.540295 (9) 0.75613 (3) 0.03831 (8)
O1 0.19454 (14) 0.31410 (5) 0.92195 (14) 0.0161 (2)
O2 0.28189 (14) 0.21775 (5) 1.01810 (15) 0.0162 (3)
O3 0.65113 (16) 0.47920 (6) 1.64497 (17) 0.0250 (3)
O4 0.76182 (19) 0.42584 (7) 1.83364 (18) 0.0345 (4)
N1 0.37015 (15) 0.35574 (6) 1.20959 (17) 0.0132 (3)
N2 0.44814 (15) 0.25853 (6) 1.31031 (17) 0.0130 (3)
N3 0.68440 (17) 0.43404 (7) 1.69974 (19) 0.0196 (3)
C1 0.15509 (18) 0.36422 (7) 0.8920 (2) 0.0155 (3)
C2 0.0566 (2) 0.37633 (8) 0.7440 (2) 0.0207 (4)
H2 0.0211 0.3490 0.6722 0.025*
C3 0.0124 (2) 0.42798 (8) 0.7046 (2) 0.0239 (4)
H3 −0.0516 0.4355 0.6063 0.029*
C4 0.0636 (2) 0.46918 (8) 0.8124 (3) 0.0240 (4)
C5 0.1582 (2) 0.45925 (8) 0.9576 (2) 0.0212 (4)
H5 0.1906 0.4870 1.0283 0.025*
C6 0.20647 (19) 0.40668 (7) 0.9997 (2) 0.0163 (3)
C7 0.30926 (19) 0.40035 (7) 1.1515 (2) 0.0154 (3)
H7 0.3347 0.4306 1.2137 0.019*
C8 0.47310 (18) 0.35266 (7) 1.36140 (19) 0.0130 (3)
C9 0.53061 (18) 0.39672 (7) 1.4535 (2) 0.0149 (3)
H9 0.5039 0.4313 1.4178 0.018*
C10 0.62842 (19) 0.38799 (7) 1.5994 (2) 0.0157 (3)
C11 0.6734 (2) 0.33696 (8) 1.6552 (2) 0.0177 (3)
H11 0.7412 0.3324 1.7530 0.021*
C12 0.6157 (2) 0.29309 (7) 1.5628 (2) 0.0169 (3)
H12 0.6452 0.2588 1.5986 0.020*
C13 0.51269 (18) 0.30003 (7) 1.4150 (2) 0.0135 (3)
C14 0.44056 (18) 0.20846 (7) 1.3632 (2) 0.0141 (3)
C15 0.38604 (18) 0.16400 (7) 1.2496 (2) 0.0142 (3)
C16 0.41170 (19) 0.11188 (7) 1.3105 (2) 0.0162 (3)
H16 0.4619 0.1069 1.4155 0.019*
C17 0.3626 (2) 0.06804 (7) 1.2151 (2) 0.0177 (3)
C18 0.2833 (2) 0.07434 (7) 1.0590 (2) 0.0182 (3)
H18 0.2489 0.0446 0.9964 0.022*
C19 0.25639 (19) 0.12505 (7) 0.9983 (2) 0.0166 (3)
H19 0.2018 0.1294 0.8943 0.020*
C20 0.30947 (18) 0.17067 (7) 1.0900 (2) 0.0138 (3)
O6 0.47681 (14) 0.19817 (5) 1.50376 (15) 0.0162 (3)
O1W 0.15751 (15) 0.28059 (7) 1.18541 (18) 0.0203 (3)
O5 0.94801 (16) 0.27762 (6) 1.48344 (18) 0.0259 (3)
N4 0.84158 (18) 0.32089 (7) 1.2543 (2) 0.0202 (3)
C21 0.9247 (2) 0.28447 (8) 1.3460 (3) 0.0232 (4)
H21 0.9687 0.2625 1.3039 0.028*
C22 0.7663 (2) 0.35587 (9) 1.3091 (3) 0.0269 (4)
H22A 0.7843 0.3468 1.4135 0.040*
H22B 0.6731 0.3516 1.2455 0.040*
H22C 0.7915 0.3924 1.3044 0.040*
C23 0.8221 (2) 0.32762 (9) 1.0947 (2) 0.0250 (4)
H23A 0.8686 0.2998 1.0680 0.037*
H23B 0.8558 0.3619 1.0826 0.037*
H23C 0.7290 0.3255 1.0285 0.037*
H1W2 0.110 (4) 0.2602 (15) 1.142 (4) 0.051 (11)*
H2W2 0.180 (3) 0.2712 (12) 1.269 (4) 0.034 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.01673 (13) 0.01111 (12) 0.00881 (11) −0.00105 (9) 0.00349 (10) −0.00144 (9)
Br1 0.03687 (12) 0.01250 (9) 0.02373 (10) 0.00229 (8) 0.00957 (9) 0.00146 (7)
Br2 0.03147 (13) 0.01713 (10) 0.04152 (14) 0.00359 (8) −0.00934 (10) 0.00522 (9)
O1 0.0204 (6) 0.0140 (6) 0.0106 (5) −0.0001 (5) 0.0030 (5) −0.0002 (4)
O2 0.0241 (7) 0.0107 (6) 0.0119 (5) −0.0022 (5) 0.0057 (5) −0.0014 (4)
O3 0.0333 (8) 0.0129 (6) 0.0223 (7) −0.0034 (6) 0.0050 (6) −0.0013 (5)
O4 0.0465 (10) 0.0217 (7) 0.0162 (7) −0.0040 (7) −0.0059 (7) −0.0030 (6)
N1 0.0153 (7) 0.0128 (6) 0.0105 (6) −0.0011 (5) 0.0043 (5) −0.0012 (5)
N2 0.0158 (7) 0.0113 (6) 0.0106 (6) −0.0006 (5) 0.0044 (5) −0.0018 (5)
N3 0.0230 (8) 0.0168 (7) 0.0161 (7) −0.0034 (6) 0.0052 (6) −0.0032 (6)
C1 0.0163 (8) 0.0155 (8) 0.0132 (7) −0.0015 (6) 0.0047 (6) −0.0003 (6)
C2 0.0209 (9) 0.0195 (9) 0.0151 (8) −0.0017 (7) 0.0011 (7) 0.0001 (7)
C3 0.0203 (9) 0.0212 (9) 0.0204 (9) 0.0007 (7) −0.0013 (8) 0.0041 (7)
C4 0.0218 (10) 0.0160 (8) 0.0261 (10) 0.0017 (7) 0.0019 (8) 0.0038 (7)
C5 0.0193 (9) 0.0146 (8) 0.0222 (9) 0.0002 (7) 0.0014 (7) −0.0002 (7)
C6 0.0172 (8) 0.0150 (8) 0.0137 (8) −0.0003 (6) 0.0034 (7) −0.0005 (6)
C7 0.0170 (8) 0.0136 (7) 0.0143 (8) 0.0000 (6) 0.0050 (7) −0.0012 (6)
C8 0.0138 (8) 0.0128 (7) 0.0107 (7) −0.0004 (6) 0.0036 (6) −0.0010 (6)
C9 0.0164 (8) 0.0137 (7) 0.0142 (7) −0.0011 (6) 0.0059 (6) −0.0014 (6)
C10 0.0186 (8) 0.0141 (8) 0.0129 (7) −0.0038 (6) 0.0050 (7) −0.0043 (6)
C11 0.0195 (9) 0.0167 (8) 0.0125 (7) −0.0011 (7) 0.0024 (7) −0.0011 (6)
C12 0.0203 (9) 0.0137 (8) 0.0138 (8) −0.0010 (7) 0.0044 (7) −0.0011 (6)
C13 0.0156 (8) 0.0133 (7) 0.0115 (7) −0.0011 (6) 0.0058 (6) −0.0019 (6)
C14 0.0150 (8) 0.0129 (7) 0.0134 (7) −0.0003 (6) 0.0049 (6) −0.0007 (6)
C15 0.0176 (8) 0.0135 (7) 0.0115 (7) −0.0009 (6) 0.0059 (6) −0.0008 (6)
C16 0.0193 (9) 0.0133 (8) 0.0152 (8) 0.0003 (6) 0.0063 (7) 0.0003 (6)
C17 0.0215 (9) 0.0113 (7) 0.0210 (9) 0.0007 (7) 0.0096 (7) 0.0009 (6)
C18 0.0222 (9) 0.0134 (8) 0.0180 (8) −0.0036 (7) 0.0075 (7) −0.0040 (6)
C19 0.0205 (9) 0.0150 (8) 0.0126 (7) −0.0029 (7) 0.0052 (7) −0.0030 (6)
C20 0.0165 (8) 0.0125 (7) 0.0134 (7) −0.0007 (6) 0.0073 (6) −0.0014 (6)
O6 0.0196 (6) 0.0164 (6) 0.0120 (6) 0.0000 (5) 0.0058 (5) 0.0006 (5)
O1W 0.0181 (7) 0.0288 (8) 0.0123 (6) −0.0024 (6) 0.0046 (5) 0.0010 (6)
O5 0.0249 (8) 0.0265 (8) 0.0253 (7) 0.0055 (6) 0.0093 (6) 0.0059 (6)
N4 0.0217 (8) 0.0207 (8) 0.0197 (8) 0.0021 (6) 0.0099 (7) 0.0001 (6)
C21 0.0229 (10) 0.0222 (9) 0.0262 (10) 0.0029 (8) 0.0120 (8) 0.0009 (8)
C22 0.0294 (11) 0.0281 (10) 0.0262 (10) 0.0088 (9) 0.0146 (9) 0.0024 (8)
C23 0.0290 (11) 0.0268 (10) 0.0200 (9) 0.0002 (8) 0.0110 (8) 0.0002 (8)

Geometric parameters (Å, º)

Mn1—O2 1.8557 (13) C9—H9 0.9300
Mn1—O1 1.8875 (13) C10—C11 1.391 (3)
Mn1—N2 1.9750 (15) C11—C12 1.385 (3)
Mn1—N1 1.9782 (15) C11—H11 0.9300
Mn1—O1W 2.2431 (15) C12—C13 1.408 (3)
Mn1—O6i 2.3448 (14) C12—H12 0.9300
Br1—C17 1.8977 (18) C14—O6 1.258 (2)
Br2—C4 1.895 (2) C14—C15 1.493 (2)
O1—C1 1.317 (2) C15—C16 1.406 (2)
O2—C20 1.331 (2) C15—C20 1.412 (2)
O3—N3 1.233 (2) C16—C17 1.383 (3)
O4—N3 1.224 (2) C16—H16 0.9300
N1—C7 1.301 (2) C17—C18 1.389 (3)
N1—C8 1.425 (2) C18—C19 1.373 (3)
N2—C14 1.365 (2) C18—H18 0.9300
N2—C13 1.410 (2) C19—C20 1.407 (2)
N3—C10 1.460 (2) C19—H19 0.9300
C1—C2 1.412 (3) O6—Mn1ii 2.3448 (14)
C1—C6 1.421 (3) O1W—H1W2 0.72 (4)
C2—C3 1.375 (3) O1W—H2W2 0.77 (3)
C2—H2 0.9300 O5—C21 1.240 (3)
C3—C4 1.398 (3) N4—C21 1.331 (3)
C3—H3 0.9300 N4—C22 1.448 (3)
C4—C5 1.368 (3) N4—C23 1.458 (3)
C5—C6 1.412 (3) C21—H21 0.9300
C5—H5 0.9300 C22—H22A 0.9600
C6—C7 1.430 (3) C22—H22B 0.9600
C7—H7 0.9300 C22—H22C 0.9600
C8—C9 1.387 (2) C23—H23A 0.9600
C8—C13 1.413 (2) C23—H23B 0.9600
C9—C10 1.380 (3) C23—H23C 0.9600
O2—Mn1—O1 88.57 (6) C9—C10—N3 118.59 (16)
O2—Mn1—N2 94.63 (6) C11—C10—N3 118.96 (16)
O1—Mn1—N2 175.06 (6) C12—C11—C10 118.98 (17)
O2—Mn1—N1 177.72 (6) C12—C11—H11 120.5
O1—Mn1—N1 93.71 (6) C10—C11—H11 120.5
N2—Mn1—N1 83.10 (6) C11—C12—C13 120.50 (17)
O2—Mn1—O1W 91.93 (6) C11—C12—H12 119.8
O1—Mn1—O1W 86.45 (6) C13—C12—H12 119.8
N2—Mn1—O1W 89.68 (6) C12—C13—N2 125.44 (16)
N1—Mn1—O1W 88.22 (6) C12—C13—C8 118.51 (16)
O2—Mn1—O6i 92.60 (5) N2—C13—C8 115.98 (15)
O1—Mn1—O6i 85.96 (5) O6—C14—N2 122.76 (16)
N2—Mn1—O6i 97.63 (6) O6—C14—C15 118.47 (16)
N1—Mn1—O6i 87.56 (6) N2—C14—C15 118.77 (15)
O1W—Mn1—O6i 171.06 (5) C16—C15—C20 118.88 (16)
C1—O1—Mn1 128.16 (12) C16—C15—C14 115.91 (15)
C20—O2—Mn1 127.29 (11) C20—C15—C14 125.18 (16)
C7—N1—C8 122.21 (15) C17—C16—C15 120.29 (17)
C7—N1—Mn1 124.56 (13) C17—C16—H16 119.9
C8—N1—Mn1 113.05 (11) C15—C16—H16 119.9
C14—N2—C13 120.16 (15) C16—C17—C18 121.12 (17)
C14—N2—Mn1 123.06 (12) C16—C17—Br1 120.75 (15)
C13—N2—Mn1 113.00 (11) C18—C17—Br1 118.11 (14)
O4—N3—O3 123.46 (17) C19—C18—C17 119.14 (17)
O4—N3—C10 118.37 (17) C19—C18—H18 120.4
O3—N3—C10 118.17 (16) C17—C18—H18 120.4
O1—C1—C2 117.94 (16) C18—C19—C20 121.56 (17)
O1—C1—C6 123.76 (16) C18—C19—H19 119.2
C2—C1—C6 118.30 (17) C20—C19—H19 119.2
C3—C2—C1 120.85 (18) O2—C20—C19 116.61 (16)
C3—C2—H2 119.6 O2—C20—C15 124.49 (16)
C1—C2—H2 119.6 C19—C20—C15 118.89 (16)
C2—C3—C4 120.02 (19) C14—O6—Mn1ii 116.75 (12)
C2—C3—H3 120.0 Mn1—O1W—H1W2 110 (3)
C4—C3—H3 120.0 Mn1—O1W—H2W2 114 (2)
C5—C4—C3 121.17 (19) H1W2—O1W—H2W2 103 (3)
C5—C4—Br2 119.20 (16) C21—N4—C22 121.24 (18)
C3—C4—Br2 119.63 (16) C21—N4—C23 121.86 (18)
C4—C5—C6 119.77 (18) C22—N4—C23 116.90 (17)
C4—C5—H5 120.1 O5—C21—N4 125.0 (2)
C6—C5—H5 120.1 O5—C21—H21 117.5
C5—C6—C1 119.88 (17) N4—C21—H21 117.5
C5—C6—C7 116.01 (16) N4—C22—H22A 109.5
C1—C6—C7 124.10 (17) N4—C22—H22B 109.5
N1—C7—C6 125.38 (17) H22A—C22—H22B 109.5
N1—C7—H7 117.3 N4—C22—H22C 109.5
C6—C7—H7 117.3 H22A—C22—H22C 109.5
C9—C8—C13 121.17 (16) H22B—C22—H22C 109.5
C9—C8—N1 124.31 (16) N4—C23—H23A 109.5
C13—C8—N1 114.51 (15) N4—C23—H23B 109.5
C10—C9—C8 118.35 (17) H23A—C23—H23B 109.5
C10—C9—H9 120.8 N4—C23—H23C 109.5
C8—C9—H9 120.8 H23A—C23—H23C 109.5
C9—C10—C11 122.43 (16) H23B—C23—H23C 109.5
O2—Mn1—O1—C1 175.97 (16) N1—C8—C9—C10 179.15 (17)
N1—Mn1—O1—C1 −4.03 (16) C8—C9—C10—C11 1.8 (3)
O1W—Mn1—O1—C1 83.95 (16) C8—C9—C10—N3 −176.83 (16)
O6i—Mn1—O1—C1 −91.32 (15) O4—N3—C10—C9 173.19 (19)
O1—Mn1—O2—C20 −162.27 (15) O3—N3—C10—C9 −6.8 (3)
N2—Mn1—O2—C20 13.96 (16) O4—N3—C10—C11 −5.5 (3)
O1W—Mn1—O2—C20 −75.87 (15) O3—N3—C10—C11 174.50 (18)
O6i—Mn1—O2—C20 111.84 (15) C9—C10—C11—C12 −1.8 (3)
O1—Mn1—N1—C7 6.45 (16) N3—C10—C11—C12 176.82 (17)
N2—Mn1—N1—C7 −169.77 (16) C10—C11—C12—C13 −0.3 (3)
O1W—Mn1—N1—C7 −79.88 (15) C11—C12—C13—N2 178.99 (18)
O6i—Mn1—N1—C7 92.24 (15) C11—C12—C13—C8 2.2 (3)
O1—Mn1—N1—C8 −178.30 (12) C14—N2—C13—C12 27.2 (3)
N2—Mn1—N1—C8 5.48 (12) Mn1—N2—C13—C12 −174.01 (15)
O1W—Mn1—N1—C8 95.38 (12) C14—N2—C13—C8 −155.88 (16)
O6i—Mn1—N1—C8 −92.51 (12) Mn1—N2—C13—C8 2.9 (2)
O2—Mn1—N2—C14 −26.70 (15) C9—C8—C13—C12 −2.2 (3)
N1—Mn1—N2—C14 153.46 (15) N1—C8—C13—C12 178.80 (16)
O1W—Mn1—N2—C14 65.22 (14) C9—C8—C13—N2 −179.31 (16)
O6i—Mn1—N2—C14 −119.95 (14) N1—C8—C13—N2 1.7 (2)
O2—Mn1—N2—C13 175.27 (12) C13—N2—C14—O6 7.6 (3)
N1—Mn1—N2—C13 −4.57 (12) Mn1—N2—C14—O6 −148.89 (15)
O1W—Mn1—N2—C13 −92.82 (13) C13—N2—C14—C15 −172.84 (16)
O6i—Mn1—N2—C13 82.02 (12) Mn1—N2—C14—C15 30.6 (2)
Mn1—O1—C1—C2 −179.45 (14) O6—C14—C15—C16 −16.2 (3)
Mn1—O1—C1—C6 0.9 (3) N2—C14—C15—C16 164.22 (16)
O1—C1—C2—C3 −179.07 (19) O6—C14—C15—C20 162.02 (18)
C6—C1—C2—C3 0.6 (3) N2—C14—C15—C20 −17.5 (3)
C1—C2—C3—C4 −0.9 (3) C20—C15—C16—C17 0.1 (3)
C2—C3—C4—C5 0.3 (4) C14—C15—C16—C17 178.44 (17)
C2—C3—C4—Br2 179.33 (17) C15—C16—C17—C18 −2.4 (3)
C3—C4—C5—C6 0.7 (3) C15—C16—C17—Br1 179.05 (14)
Br2—C4—C5—C6 −178.36 (16) C16—C17—C18—C19 1.7 (3)
C4—C5—C6—C1 −1.0 (3) Br1—C17—C18—C19 −179.70 (15)
C4—C5—C6—C7 177.4 (2) C17—C18—C19—C20 1.3 (3)
O1—C1—C6—C5 −179.99 (18) Mn1—O2—C20—C19 173.51 (13)
C2—C1—C6—C5 0.4 (3) Mn1—O2—C20—C15 −5.8 (3)
O1—C1—C6—C7 1.8 (3) C18—C19—C20—O2 177.07 (17)
C2—C1—C6—C7 −177.89 (18) C18—C19—C20—C15 −3.6 (3)
C8—N1—C7—C6 179.15 (17) C16—C15—C20—O2 −177.88 (17)
Mn1—N1—C7—C6 −6.0 (3) C14—C15—C20—O2 3.9 (3)
C5—C6—C7—N1 −177.16 (19) C16—C15—C20—C19 2.8 (3)
C1—C6—C7—N1 1.2 (3) C14—C15—C20—C19 −175.36 (17)
C7—N1—C8—C9 −9.0 (3) N2—C14—O6—Mn1ii 83.77 (19)
Mn1—N1—C8—C9 175.61 (14) C15—C14—O6—Mn1ii −95.75 (17)
C7—N1—C8—C13 169.94 (17) C22—N4—C21—O5 −1.6 (3)
Mn1—N1—C8—C13 −5.44 (19) C23—N4—C21—O5 178.2 (2)
C13—C8—C9—C10 0.3 (3)

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, −y+1/2, z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1W—H1W2···O5iii 0.73 (4) 2.03 (4) 2.736 (2) 163 (4)
O1W—H2W2···O1ii 0.77 (3) 2.55 (3) 3.178 (2) 140 (3)
O1W—H2W2···O2ii 0.77 (3) 2.19 (3) 2.890 (2) 153 (3)
C2—H2···O5iv 0.93 2.42 3.351 (2) 175
C5—H5···O4v 0.93 2.49 3.395 (3) 166
C7—H7···O3v 0.93 2.60 3.509 (2) 167
C18—H18···Br2vi 0.93 2.83 3.449 (2) 125
C23—H23A···O5i 0.96 2.40 3.350 (3) 170

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, −y+1/2, z+1/2; (iii) x−1, −y+1/2, z−1/2; (iv) x−1, y, z−1; (v) −x+1, −y+1, −z+3; (vi) −x, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5080).

References

  1. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chandra, S., Parmar, S. & Kumar, Y. (2009). Bioinorg. Chem. Appl. Article ID 851316, 6 pp. [DOI] [PMC free article] [PubMed]
  3. Chrisianson, D. W. & Cox, D. (1999). Annu. Rev. Biochem 68, 33–57. [DOI] [PubMed]
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Huh, H. S. & Lee, S. W. (2008). Bull. Korean Chem. Soc 29 2383–2385.
  6. Ma, C.-B., Hu, M.-Q., Zhang, C.-X., Chen, F., Chen, C.-N. & Liu, Q.-T. (2004). Acta Cryst. C60, m288–m290. [DOI] [PubMed]
  7. Maneiro, M., Bermejo, M. R., Fernánde, I., Gomez, E., Noya, A. M. G. & Tyryshkin, A. A. M. (2003). New J. Chem 27, 727–733.
  8. Ni, C., Rekken, B., Fettinger, J. C., Long, G. J. & Power, P. P. (2009). Dalton Trans pp. 8349–8355. [DOI] [PubMed]
  9. Pastoriza-Santos, I. & Liz-Marzań, L. M. (2009). Adv. Funct. Mater. 19, 679–688.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Su, J.-R. & Xu, D.-J. (2005). Acta Cryst. C61, m256–m258. [DOI] [PubMed]
  13. Zhang, Q.-Z., Lu, C.-Z. & Xia, C.-K. (2005). Inorg. Chem. Commun. 8, 304–306.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, an. DOI: 10.1107/S1600536812008501/is5080sup1.cif

e-68-0m365-sup1.cif (33.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812008501/is5080Isup2.hkl

e-68-0m365-Isup2.hkl (392.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES