Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 3;68(Pt 4):m370. doi: 10.1107/S1600536812008513

Poly[[μ10-4,4′-(ethane-1,2-diyldi­oxy)dibenzoato]dipotassium]

Zhen Ma a,*, Baohuan Liang a, Wanbing Lu a
PMCID: PMC3343791  PMID: 22589765

Abstract

The title salt, [K2(C16H12O6)]n, was obtained by the reaction of 1,2-bis­[4-(ethyl-carbox­yl)-phenox­yl]ethane with KOH in water. The anion lies on a crystallographic inversion center, which is located at the mid-point of the central C—C bond. The K+ cation is coordinated by six O atoms, two from the chelating carboxyl­ate group of the anion and four from four neighboring and monodentately binding anions, giving rise to an irregular [KO6] coordination polyhedron. The coordination mode of the cation leads to the formation of K/O layers parallel to (100). These layers are linked by the nearly coplanar anions (r.m.s. deviation of 0.064 Å of the carboxyl, aryl and O—CH2 groups from the least-squares plane) into a three-dimentional network.

Related literature  

For the preparation, structures, properties and applications of metal carboxyl­ate compounds, see: Ma et al. (2005); Su et al. (2010); Zhang & Chen (2008); Zhu et al. (2008). For the preparation of the precusor, see: Ma & Yang (2011). For standard bond lengths, see: Allen et al. (1987).graphic file with name e-68-0m370-scheme1.jpg

Experimental  

Crystal data  

  • [K2(C16H12O6)]

  • M r = 189.23

  • Monoclinic, Inline graphic

  • a = 18.0696 (7) Å

  • b = 3.9866 (1) Å

  • c = 11.3189 (5) Å

  • β = 107.188 (2)°

  • V = 778.96 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 298 K

  • 0.15 × 0.11 × 0.10 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.919, T max = 0.938

  • 7387 measured reflections

  • 2146 independent reflections

  • 1999 reflections with I > 2σ(I)

  • R int = 0.018

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.023

  • wR(F 2) = 0.067

  • S = 1.01

  • 2146 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812008513/wm2592sup1.cif

e-68-0m370-sup1.cif (19.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812008513/wm2592Isup2.hkl

e-68-0m370-Isup2.hkl (105.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

K1—O2i 2.6558 (8)
K1—O1ii 2.6780 (8)
K1—O2 2.7069 (8)
K1—O1iii 2.7167 (8)
K1—O2iv 2.8027 (8)
K1—O1 3.0335 (8)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors are grateful for financial support from the Scientific Fund of Guangxi University (X061144) and the Opening Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology (K008).

supplementary crystallographic information

Comment

The coordination chemistry of carboxylic compounds is attracting current attention, based on interesting properties like gas adsorption and separation, catalysis, magnetism, luminescence and host-guest chemistry (Su et al., 2010; Zhu et al., 2008) of these compounds. It is well-known that carboxylic acids are excellent building blocks for the construction of coordination polymers, yielding extended frameworks by virtue of their bridging abilities (Ma et al., 2005; Zhang & Chen, 2008). Hence, the present paper aims to promote the search for new metal carboxylic complexes exhibiting special properties in many fields, in particular those bearing multicarboxylic-type ligands, a promising but still rather underdeveloped field of research. We report here the structure of a new polymeric dipotassium dicarboxylic compound (Fig. 1).

In the asymmetric unit one half of the anion is present. The anion lies on a crystallographic inversion center, which is located at the mid point of the C8—C8i bond (symmetry code (i) = -x-1, -y-1, -z). All bond lengths and angles of the anion are within normal ranges (Allen et al., 1987). The K+ ion is coordinated by six oxygen atoms, two from the ligand and four from neighboring ligands, in a distorted [KO6] polyhedron (Fig 2), whereby one anion coordinates all in all to ten K+ cations. The benzene rings of the anion are parallel to each other with a plane-to-plane distance of 3.488 Å. The carboxyl, aryl and O—CH2 moieties are coplanar with an r.m.s. deviation of 0.0638 Å.

A three-dimensional network is spanned owing to the coordination mode of the potassium cations. The K+ cations and the O atoms of the carboxylate anions form a layer parallel to (100). These layers are finally connected by the substituted ethane moieties into a three-dimensional structure (Fig. 2).

Experimental

The precusor of the title compound was prepared by a reported procedure (Ma & Yang, 2011). The title compound was synthesized by the reaction of the precusor, diethyl 4,4'-(ethane-1,2-diyldioxy)-dibenzoate and potassium hydroxide in the conditions as follows: The precusor (1.0 g, 2.8 mM) and KOH (0.31 g, 5.6 mM) were put in water (150 cm3) in a 250 cm3 flask and the system was stirred for 24 h at 373 K for all solids dissolved and cooled down to room temperature. After filtration, a colorless solution was obtained. Evaporation of the solution gave a white solid (0.82 g, 77 %), which was washed with ethanol two times (10 ml each). Slow evaporation of a solution of the title compound in water led to the formation of colorless crystals, which were suitable for X-ray characterization.

Refinement

Hydrogen atoms bonded to the C atoms of the anion were positioned geometrically and refined using a riding model with C—H = 0.93 - 0.97 Å and with Uiso(H) = 1.2 times Ueq(C). These hydrogen atoms were assigned isotropic thermal parameters and allowed to ride on their respective parent atoms.

Figures

Fig. 1.

Fig. 1.

Coordination environment around the K ions in the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. [symmetry code: (A) -x-1, -y-1, -z; (B) -x, -y-1/2, -z+1/2; (C) -x, y+1/2, -z+1/2; (D) x-1, -y-3/2, z-1/2; (E) x-1, -y-1/2, z-1/2]

Fig. 2.

Fig. 2.

A view of the crystal packing along the b axis. Longer bonds between the K+ ions and O atoms are shown with dotted lines.

Crystal data

[K2(C16H12O6)] F(000) = 388
Mr = 189.23 Dx = 1.614 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 7387 reflections
a = 18.0696 (7) Å θ = 3.5–29.6°
b = 3.9866 (1) Å µ = 0.64 mm1
c = 11.3189 (5) Å T = 298 K
β = 107.188 (2)° Prism, colorless
V = 778.96 (5) Å3 0.15 × 0.11 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 2146 independent reflections
Radiation source: fine-focus sealed tube 1999 reflections with I > 2σ(I)
Graphite Monochromator monochromator Rint = 0.018
phi and ω scans θmax = 29.6°, θmin = 3.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −25→25
Tmin = 0.919, Tmax = 0.938 k = −5→4
7387 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0361P)2 + 0.4108P] where P = (Fo2 + 2Fc2)/3
2146 reflections (Δ/σ)max < 0.001
109 parameters Δρmax = 0.39 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
K1 −0.062276 (12) 0.69576 (6) −0.14996 (2) 0.01343 (8)
O1 0.10069 (4) 0.8108 (2) 0.01861 (7) 0.01551 (16)
O2 0.08101 (4) 0.6705 (2) −0.17911 (7) 0.01591 (16)
O3 0.41949 (4) 1.2442 (2) −0.07832 (8) 0.02053 (18)
C1 0.12233 (6) 0.7855 (2) −0.07712 (9) 0.01162 (18)
C2 0.20252 (5) 0.9047 (3) −0.07224 (9) 0.01196 (18)
C3 0.23052 (6) 0.8522 (3) −0.17345 (10) 0.01459 (19)
H3A 0.1997 0.7410 −0.2428 0.018*
C4 0.30339 (6) 0.9630 (3) −0.17205 (10) 0.0162 (2)
H4A 0.3215 0.9234 −0.2396 0.019*
C5 0.34944 (6) 1.1339 (3) −0.06932 (10) 0.0154 (2)
C6 0.32378 (6) 1.1810 (3) 0.03393 (10) 0.0170 (2)
H6A 0.3552 1.2870 0.1040 0.020*
C7 0.25020 (6) 1.0670 (3) 0.03085 (9) 0.0151 (2)
H7A 0.2327 1.1005 0.0994 0.018*
C8 0.46737 (6) 1.4328 (3) 0.02248 (11) 0.0192 (2)
H8A 0.4875 1.2908 0.0944 0.023*
H8B 0.4383 1.6153 0.0442 0.023*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
K1 0.01384 (11) 0.01391 (12) 0.01382 (12) −0.00019 (7) 0.00604 (8) 0.00031 (7)
O1 0.0156 (3) 0.0186 (4) 0.0148 (4) −0.0019 (3) 0.0082 (3) −0.0009 (3)
O2 0.0128 (3) 0.0207 (4) 0.0144 (3) −0.0028 (3) 0.0041 (3) −0.0033 (3)
O3 0.0129 (4) 0.0248 (4) 0.0266 (4) −0.0065 (3) 0.0100 (3) −0.0045 (3)
C1 0.0107 (4) 0.0106 (4) 0.0142 (4) 0.0004 (3) 0.0047 (3) 0.0010 (3)
C2 0.0101 (4) 0.0129 (4) 0.0132 (4) −0.0003 (3) 0.0040 (3) 0.0014 (4)
C3 0.0126 (4) 0.0183 (5) 0.0132 (4) −0.0010 (4) 0.0042 (4) −0.0014 (4)
C4 0.0146 (4) 0.0207 (5) 0.0159 (5) −0.0008 (4) 0.0083 (4) 0.0001 (4)
C5 0.0103 (4) 0.0155 (5) 0.0216 (5) −0.0008 (3) 0.0066 (4) 0.0016 (4)
C6 0.0131 (4) 0.0203 (5) 0.0174 (5) −0.0037 (4) 0.0042 (4) −0.0041 (4)
C7 0.0135 (4) 0.0184 (5) 0.0148 (5) −0.0020 (4) 0.0062 (4) −0.0019 (4)
C8 0.0123 (4) 0.0186 (5) 0.0276 (6) −0.0032 (4) 0.0073 (4) −0.0011 (4)

Geometric parameters (Å, º)

K1—O2i 2.6558 (8) C1—C2 1.5104 (13)
K1—O1ii 2.6780 (8) C2—C7 1.3886 (14)
K1—O2 2.7069 (8) C2—C3 1.3981 (14)
K1—O1iii 2.7167 (8) C3—C4 1.3845 (14)
K1—O2iv 2.8027 (8) C3—H3A 0.9300
K1—O1 3.0335 (8) C4—C5 1.3918 (15)
O1—C1 1.2599 (12) C4—H4A 0.9300
O1—K1ii 2.6780 (8) C5—C6 1.3914 (15)
O1—K1iii 2.7167 (8) C6—C7 1.3957 (14)
O2—C1 1.2613 (12) C6—H6A 0.9300
O2—K1iv 2.6558 (8) C7—H7A 0.9300
O2—K1i 2.8027 (8) C8—C8v 1.514 (2)
O3—C5 1.3719 (12) C8—H8A 0.9700
O3—C8 1.4254 (14) C8—H8B 0.9700
O2i—K1—O1ii 83.27 (2) C2—C1—K1 163.16 (7)
O2i—K1—O2 81.85 (2) O1—C1—K1i 130.55 (7)
O1ii—K1—O2 120.61 (2) O2—C1—K1i 52.82 (5)
O2i—K1—O1iii 158.48 (3) C2—C1—K1i 85.79 (5)
O1ii—K1—O1iii 95.29 (2) K1—C1—K1i 77.91 (2)
O2—K1—O1iii 116.57 (2) C7—C2—C3 118.26 (9)
O2i—K1—O2iv 93.79 (2) C7—C2—C1 121.84 (9)
O1ii—K1—O2iv 159.03 (2) C3—C2—C1 119.90 (9)
O2—K1—O2iv 79.21 (2) C4—C3—C2 121.06 (10)
O1iii—K1—O2iv 79.87 (2) C4—C3—K1i 124.14 (7)
O2i—K1—O1 103.98 (2) C2—C3—K1i 86.80 (6)
O1ii—K1—O1 84.40 (2) C4—C3—H3A 119.5
O2—K1—O1 45.30 (2) C2—C3—H3A 119.5
O1iii—K1—O1 97.22 (2) K1i—C3—H3A 59.1
O2iv—K1—O1 116.36 (2) C3—C4—C5 119.85 (9)
C1—O1—K1ii 137.18 (7) C3—C4—H4A 120.1
C1—O1—K1iii 127.26 (6) C5—C4—H4A 120.1
K1ii—O1—K1iii 95.29 (2) O3—C5—C6 124.26 (10)
C1—O1—K1 86.40 (6) O3—C5—C4 115.58 (9)
K1ii—O1—K1 95.60 (2) C6—C5—C4 120.15 (9)
K1iii—O1—K1 82.78 (2) C5—C6—C7 119.12 (10)
C1—O2—K1iv 147.07 (7) C5—C6—H6A 120.4
C1—O2—K1 101.75 (6) C7—C6—H6A 120.4
K1iv—O2—K1 101.23 (3) C2—C7—C6 121.51 (9)
C1—O2—K1i 106.17 (6) C2—C7—H7A 119.2
K1iv—O2—K1i 93.79 (2) C6—C7—H7A 119.2
K1—O2—K1i 97.56 (3) O3—C8—C8v 105.46 (12)
C5—O3—C8 117.68 (9) O3—C8—H8A 110.6
O1—C1—O2 124.48 (9) C8v—C8—H8A 110.6
O1—C1—C2 118.78 (9) O3—C8—H8B 110.6
O2—C1—C2 116.73 (9) C8v—C8—H8B 110.6
O1—C1—K1 70.54 (5) H8A—C8—H8B 108.8
O2—C1—K1 55.63 (5)
O2i—K1—O1—C1 −55.46 (6) K1—O2—C1—K1i −101.55 (4)
O1ii—K1—O1—C1 −137.08 (7) O2i—K1—C1—O1 126.93 (6)
O2—K1—O1—C1 7.68 (5) O1ii—K1—C1—O1 43.72 (7)
O1iii—K1—O1—C1 128.28 (6) O2—K1—C1—O1 −165.70 (10)
O2iv—K1—O1—C1 46.04 (6) O1iii—K1—C1—O1 −56.46 (7)
O2i—K1—O1—K1ii 81.62 (3) O2iv—K1—C1—O1 −139.16 (6)
O1ii—K1—O1—K1ii 0.0 C1iv—K1—C1—O1 −158.75 (5)
O2—K1—O1—K1ii 144.76 (4) C3iv—K1—C1—O1 −147.22 (6)
O1iii—K1—O1—K1ii −94.64 (2) K1iii—K1—C1—O1 −39.24 (5)
O2iv—K1—O1—K1ii −176.88 (2) K1vi—K1—C1—O1 −97.19 (6)
O2i—K1—O1—K1iii 176.26 (2) K1vii—K1—C1—O1 82.81 (6)
O1ii—K1—O1—K1iii 94.64 (2) O2i—K1—C1—O2 −67.37 (5)
O2—K1—O1—K1iii −120.60 (4) O1ii—K1—C1—O2 −150.59 (6)
O1iii—K1—O1—K1iii 0.0 O1iii—K1—C1—O2 109.24 (6)
O2iv—K1—O1—K1iii −82.24 (3) O2iv—K1—C1—O2 26.54 (6)
O2i—K1—O2—C1 111.19 (5) O1—K1—C1—O2 165.70 (10)
O1ii—K1—O2—C1 34.03 (7) C1iv—K1—C1—O2 6.95 (7)
O1iii—K1—O2—C1 −80.53 (7) O2i—K1—C1—C2 0.4 (2)
O2iv—K1—O2—C1 −153.35 (6) O1ii—K1—C1—C2 −82.8 (2)
O1—K1—O2—C1 −7.82 (6) O2—K1—C1—C2 67.7 (2)
O2i—K1—O2—K1iv −92.56 (4) O1iii—K1—C1—C2 177.0 (2)
O1ii—K1—O2—K1iv −169.72 (2) O2iv—K1—C1—C2 94.3 (2)
O1iii—K1—O2—K1iv 75.72 (3) O1—K1—C1—C2 −126.6 (3)
O2iv—K1—O2—K1iv 2.91 (2) O2i—K1—C1—K1i −14.40 (2)
O1—K1—O2—K1iv 148.43 (4) O1ii—K1—C1—K1i −97.62 (2)
O2i—K1—O2—K1i 2.85 (2) O2—K1—C1—K1i 52.97 (6)
O1ii—K1—O2—K1i −74.31 (3) O1iii—K1—C1—K1i 162.21 (2)
O1iii—K1—O2—K1i 171.14 (2) O2iv—K1—C1—K1i 79.51 (2)
O2iv—K1—O2—K1i 98.32 (4) O1—K1—C1—K1i −141.33 (6)
O1—K1—O2—K1i −116.16 (4) O1—C1—C2—C7 −5.67 (15)
K1ii—O1—C1—O2 −108.67 (11) O2—C1—C2—C7 173.34 (10)
K1iii—O1—C1—O2 63.78 (13) O1—C1—C2—C3 174.29 (9)
K1—O1—C1—O2 −14.32 (10) O2—C1—C2—C3 −6.70 (14)
K1ii—O1—C1—C2 70.25 (13) C7—C2—C3—C4 −0.94 (16)
K1iii—O1—C1—C2 −117.29 (9) C1—C2—C3—C4 179.10 (10)
K1—O1—C1—C2 164.60 (8) C7—C2—C3—K1i −129.43 (9)
K1ii—O1—C1—K1 −94.35 (8) C1—C2—C3—K1i 50.60 (9)
K1iii—O1—C1—K1 78.10 (6) C2—C3—C4—C5 −0.93 (17)
K1ii—O1—C1—K1i −40.84 (13) K1i—C3—C4—C5 108.31 (10)
K1iii—O1—C1—K1i 131.62 (6) C8—O3—C5—C6 −3.09 (16)
K1—O1—C1—K1i 53.52 (7) C8—O3—C5—C4 177.44 (10)
K1iv—O2—C1—O1 −116.98 (12) C3—C4—C5—O3 −177.77 (10)
K1—O2—C1—O1 16.41 (11) C3—C4—C5—C6 2.74 (17)
K1i—O2—C1—O1 117.97 (9) O3—C5—C6—C7 177.93 (10)
K1iv—O2—C1—C2 64.08 (15) C4—C5—C6—C7 −2.63 (17)
K1—O2—C1—C2 −162.53 (7) C3—C2—C7—C6 1.04 (16)
K1i—O2—C1—C2 −60.98 (9) C1—C2—C7—C6 −179.00 (10)
K1iv—O2—C1—K1 −133.39 (13) C5—C6—C7—C2 0.73 (17)
K1i—O2—C1—K1 101.55 (4) C5—O3—C8—C8v −170.63 (11)
K1iv—O2—C1—K1i 125.05 (13)

Symmetry codes: (i) −x, y+1/2, −z−1/2; (ii) −x, −y+2, −z; (iii) −x, −y+1, −z; (iv) −x, y−1/2, −z−1/2; (v) −x+1, −y+3, −z; (vi) x, y−1, z; (vii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2592).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2001). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2002). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Ma, Z., Chen, Z. & Cao, R. (2005). Eur. J. Inorg. Chem. pp. 2978–2981.
  5. Ma, Z. & Yang, H. (2011). Acta Cryst. E67, o1623. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Su, S. Q., Guo, Z. Y., Li, G. H., Deng, R. P., Song, S. Y., Qin, C., Pan, C. L., Guo, H. D., Gao, F., Wang, S. & Zhang, H. J. (2010). Dalton Trans. 39, 9123–9130. [DOI] [PubMed]
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  10. Zhang, J. P. & Chen, X. M. (2008). J. Am. Chem. Soc. 130, 6010-6017. [DOI] [PubMed]
  11. Zhu, X., Ma, Z., Bi, W., Wang, Y., Yuan, D. & Cao, R. (2008). CrystEngComm, 10, 19–22.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812008513/wm2592sup1.cif

e-68-0m370-sup1.cif (19.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812008513/wm2592Isup2.hkl

e-68-0m370-Isup2.hkl (105.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES