Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 7;68(Pt 4):m387. doi: 10.1107/S1600536812009191

Dichloridobis[(ferrocenyl­methyl­idene)(furan-2-ylmeth­yl)amine-κN]palladium(II)

William M Motswainyana a, Martin O Onani a, Roger A Lalancette b,*
PMCID: PMC3343801  PMID: 22589775

Abstract

The title compound, [Fe2Pd(C5H5)2(C11H10NO)2Cl2], exhibits a square-planar geometry at the PdII atom, which is determined by inversion-related chlorine and ferrocenyl­imine mol­ecules across a center of symmetry. The ferrocenyl­imine moieties are trans to each other.

Related literature  

For the synthesis of ferrocenyl­imine ligands and their transition metal-based complexes, see: Mu et al. (2007); Lu et al. (2007); Pou et al. (2007); Neuse et al. (1988). For related structures, see: Rajput et al. (2004, 2006); Nelana et al. (2008). For related applications, see: Stang et al. (1996); Pou et al. (2007). For Pd—Cl bond lengths, see: Allen (2002). For the preparation of the precursor mol­ecule, see: Salo & Guan (2003).graphic file with name e-68-0m387-scheme1.jpg

Experimental  

Crystal data  

  • [Fe2Pd(C5H5)2(C11H10NO)2Cl2]

  • M r = 763.58

  • Monoclinic, Inline graphic

  • a = 12.2113 (7) Å

  • b = 7.3439 (5) Å

  • c = 16.365 (1) Å

  • β = 100.616 (4)°

  • V = 1442.44 (16) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 14.91 mm−1

  • T = 100 K

  • 0.44 × 0.07 × 0.04 mm

Data collection  

  • Bruker SMART CCD APEXII area-detector diffractometer

  • Absorption correction: numerical (SADABS; Sheldrick, 2008a ; Parkin et al., 1995) T min = 0.059, T max = 0.560

  • 12086 measured reflections

  • 2598 independent reflections

  • 1886 reflections with I > 2σ(I)

  • R int = 0.088

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.109

  • S = 1.02

  • 2598 reflections

  • 187 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −1.01 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008b ); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block, global. DOI: 10.1107/S1600536812009191/pk2391sup1.cif

e-68-0m387-sup1.cif (26.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009191/pk2391Isup2.hkl

e-68-0m387-Isup2.hkl (127.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge support by NSF–CRIF grant No. 0443538, NRF Thuthuka and Mobility Travel Grant and UWC Senate Research.

supplementary crystallographic information

Comment

Ferrocenyl derivatives containing good donor atoms have evoked research interest because their coordination to another metal produces multicentered molecules where the two metals are in close proximity but in different environments. This property may influence the mutual cooperation of the metals in a variety of application processes (Stang et al., 1996; Rajput et al., 2004; Rajput et al., 2006; Neuse et al., 1988; Pou et al., 2007). For instance, some ferrocenyl complexes have displayed promising cytotoxicity profiles (Neuse et al., 1988; Pou et al., 2007). Preference for these complexes is derived from their convenience of preparation, facile modification and handling (Mu et al., 2007; Lu et al., 2007). In an attempt to prepare new bulky bis(ferrocenylimine) palladiumII complexes which could induce apoptosis on tumor cells, the title compound was obtained.

The molecular structure contains one molecule of the PdII complex (Fig. 1) across a center of symmetry (one-half of the molecule is the asymmetric unit). All bond lengths and angles are normal and comparable with those reported for similar structures (Rajput et al., 2004; Nelana et al., 2008; Pou et al., 2007). The PdII ion has square planar coordination geometry around the metal center coordinated to two ferrocenylimine ligands via the imine nitrogen atoms and the chloride ions. The ferrocenylimine molecules are trans to each other across the center of symmetry. There is no trans influence observed for the chloride ligands: the Pd–Cl bond length is in agreement with known Pd–Cl bond distances for palladium complexes (Allen, 2002).

Experimental

[PdCl2(cod)] was prepared following literature method (Salo & Guan, 2003). To a suspension of PdCl2(cod) [0.0394 g, 0.138 mmol] in a mixture of CH2Cl2/Et2O (20 ml) was added a solution of ferrocenyl-2-furylmethyl)imine (0.0801 g, 0.2732 mmol) in CH2Cl2 (5 ml). An orange precipitate was observed immediately. The reaction was stirred at room temperature for 12 hrs. The precipitate was filtered off, washed with dry hexane (2 x 5 ml) and dried under vacuum to yield an orange solid. Recrystallization of the product was done from a mixture of CH2Cl2:C6H14 which gave single crystals which were used for the X-ray diffraction studies. The yield of the product was 0.0738 g which translates to 70%.

Refinement

All H atoms for (I) were found in electron density difference maps. The methylene, methine, furanyl & cyclopentadienyl Hs were placed in geometrically idealized positions and constrained to ride on their parent C atoms with C—H distances of 0.99, 1.00, 0.95, and 0.95 Å, respectively, and Uiso(H) = 1.2Ueq(C). The low fraction of data collected may affect the precision of the structure.

An additional empirical absorption correction was made using the program XABS2 (Parkin et al., 1995), which flattened the residual difference map features from 1.60 and -1.51 eÅ-3 to 0.85 and -0.10 eÅ-3 and lowered R1 to 4.30% from 5.50%.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure with displacement ellipsoids drawn at the 30% probability level for non-H atoms.

Crystal data

[Fe2Pd(C5H5)2(C11H10NO)2Cl2] F(000) = 768
Mr = 763.58 Dx = 1.758 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2yn Cell parameters from 5083 reflections
a = 12.2113 (7) Å θ = 4.2–71.6°
b = 7.3439 (5) Å µ = 14.91 mm1
c = 16.365 (1) Å T = 100 K
β = 100.616 (4)° Needle, red
V = 1442.44 (16) Å3 0.44 × 0.07 × 0.04 mm
Z = 2

Data collection

Bruker SMART CCD APEXII area-detector diffractometer 2598 independent reflections
Radiation source: fine-focus sealed tube 1886 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.088
φ and ω scans θmax = 71.6°, θmin = 4.2°
Absorption correction: numerical (SADABS; Sheldrick, 2008a; Parkin et al., 1995) h = −14→14
Tmin = 0.059, Tmax = 0.560 k = −7→8
12086 measured reflections l = −18→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.053P)2] where P = (Fo2 + 2Fc2)/3
2598 reflections (Δ/σ)max < 0.001
187 parameters Δρmax = 0.85 e Å3
0 restraints Δρmin = −1.01 e Å3

Special details

Experimental. 'Crystal mounted on a Cryoloop using Paratone-N.'
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pd1 0.5000 0.0000 0.5000 0.01970 (17)
Fe1 0.16463 (7) 0.24226 (12) 0.38773 (5) 0.0222 (2)
Cl1 0.50057 (10) −0.24917 (19) 0.41448 (8) 0.0259 (3)
O1 0.6314 (3) 0.0915 (7) 0.2825 (3) 0.0447 (12)
N1 0.4827 (3) 0.1692 (6) 0.4011 (3) 0.0216 (10)
C1 0.3939 (4) 0.2003 (7) 0.3462 (3) 0.0237 (12)
H1 0.4004 0.2900 0.3055 0.028*
C2 0.2862 (4) 0.1145 (7) 0.3395 (3) 0.0212 (12)
C3 0.2431 (4) −0.0047 (8) 0.3950 (3) 0.0221 (11)
H3 0.2866 −0.0615 0.4464 0.026*
C4 0.1275 (4) −0.0274 (8) 0.3641 (3) 0.0247 (13)
H4 0.0752 −0.1019 0.3907 0.030*
C5 0.0977 (5) 0.0775 (8) 0.2905 (3) 0.0243 (13)
H5 0.0211 0.0886 0.2565 0.029*
C6 0.1943 (4) 0.1658 (8) 0.2740 (3) 0.0243 (12)
H6 0.1985 0.2483 0.2260 0.029*
C7 0.2220 (5) 0.4917 (9) 0.4320 (4) 0.0366 (14)
H7 0.2929 0.5502 0.4233 0.044*
C8 0.2098 (5) 0.3762 (8) 0.4999 (3) 0.0333 (15)
H8 0.2702 0.3391 0.5468 0.040*
C9 0.0967 (5) 0.3196 (8) 0.4873 (4) 0.0327 (14)
H9 0.0629 0.2367 0.5243 0.039*
C10 0.0392 (5) 0.4038 (8) 0.4125 (4) 0.0330 (15)
H10 −0.0417 0.3902 0.3882 0.040*
C11 0.1169 (5) 0.5103 (9) 0.3793 (3) 0.0347 (14)
H11 0.1008 0.5841 0.3271 0.042*
C12 0.5830 (4) 0.2729 (8) 0.3932 (3) 0.0263 (13)
H12A 0.6173 0.3222 0.4482 0.032*
H12B 0.5617 0.3770 0.3551 0.032*
C13 0.6655 (4) 0.1593 (8) 0.3610 (3) 0.0285 (13)
C14 0.7705 (5) 0.1052 (10) 0.3911 (4) 0.0394 (16)
H14 0.8138 0.1352 0.4437 0.047*
C15 0.8039 (5) −0.0051 (11) 0.3289 (4) 0.0503 (18)
H15 0.8741 −0.0634 0.3322 0.060*
C16 0.7198 (6) −0.0120 (10) 0.2654 (5) 0.0526 (19)
H16 0.7197 −0.0781 0.2155 0.063*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pd1 0.0167 (3) 0.0232 (3) 0.0167 (3) 0.0001 (2) −0.00344 (19) −0.0002 (2)
Fe1 0.0187 (4) 0.0246 (5) 0.0207 (5) 0.0013 (4) −0.0032 (3) −0.0016 (4)
Cl1 0.0254 (7) 0.0275 (8) 0.0216 (7) 0.0012 (6) −0.0039 (5) −0.0054 (6)
O1 0.022 (2) 0.071 (3) 0.038 (3) 0.004 (2) −0.0021 (19) −0.019 (2)
N1 0.019 (2) 0.022 (3) 0.023 (3) −0.0030 (19) −0.0002 (19) 0.0001 (19)
C1 0.026 (3) 0.026 (3) 0.019 (3) 0.002 (2) 0.003 (2) −0.001 (2)
C2 0.021 (3) 0.023 (3) 0.018 (3) 0.001 (2) 0.001 (2) −0.003 (2)
C3 0.019 (3) 0.026 (3) 0.019 (3) 0.006 (3) −0.002 (2) 0.000 (3)
C4 0.019 (3) 0.028 (4) 0.025 (3) −0.001 (2) −0.002 (2) −0.001 (2)
C5 0.022 (3) 0.024 (3) 0.023 (3) 0.003 (2) −0.006 (2) −0.007 (2)
C6 0.022 (3) 0.030 (3) 0.018 (3) 0.006 (2) −0.004 (2) −0.004 (2)
C7 0.039 (3) 0.031 (4) 0.039 (4) −0.011 (3) 0.006 (3) −0.018 (3)
C8 0.032 (3) 0.040 (4) 0.022 (3) 0.002 (3) −0.010 (3) −0.012 (3)
C9 0.035 (3) 0.032 (4) 0.035 (4) 0.003 (3) 0.015 (3) −0.005 (3)
C10 0.023 (3) 0.029 (4) 0.043 (4) 0.009 (3) −0.004 (3) −0.010 (3)
C11 0.049 (4) 0.027 (3) 0.026 (3) 0.014 (3) −0.002 (3) 0.003 (3)
C12 0.027 (3) 0.031 (4) 0.019 (3) −0.005 (2) 0.001 (2) −0.003 (2)
C13 0.019 (3) 0.040 (4) 0.026 (3) −0.004 (3) 0.002 (2) 0.002 (3)
C14 0.023 (3) 0.066 (5) 0.027 (4) −0.001 (3) 0.003 (3) 0.009 (3)
C15 0.027 (3) 0.074 (5) 0.052 (4) 0.011 (4) 0.012 (3) 0.017 (4)
C16 0.035 (4) 0.070 (5) 0.054 (4) 0.011 (4) 0.011 (3) −0.026 (4)

Geometric parameters (Å, º)

Pd1—N1 2.021 (4) C4—C5 1.420 (7)
Pd1—N1i 2.021 (4) C4—H4 1.0000
Pd1—Cl1 2.3045 (13) C5—C6 1.415 (8)
Pd1—Cl1i 2.3045 (13) C5—H5 1.0000
Fe1—C2 2.034 (5) C6—H6 1.0000
Fe1—C10 2.036 (6) C7—C11 1.415 (8)
Fe1—C6 2.040 (5) C7—C8 1.427 (8)
Fe1—C9 2.041 (6) C7—H7 1.0000
Fe1—C3 2.044 (5) C8—C9 1.421 (8)
Fe1—C5 2.046 (5) C8—H8 1.0000
Fe1—C7 2.046 (6) C9—C10 1.434 (8)
Fe1—C11 2.050 (6) C9—H9 1.0000
Fe1—C4 2.053 (6) C10—C11 1.413 (9)
Fe1—C8 2.065 (5) C10—H10 1.0000
O1—C13 1.369 (6) C11—H11 1.0000
O1—C16 1.390 (7) C12—C13 1.478 (8)
N1—C1 1.295 (6) C12—H12A 0.9900
N1—C12 1.468 (7) C12—H12B 0.9900
C1—C2 1.445 (7) C13—C14 1.346 (8)
C1—H1 0.9500 C14—C15 1.419 (9)
C2—C3 1.430 (7) C14—H14 0.9500
C2—C6 1.451 (7) C15—C16 1.320 (9)
C3—C4 1.420 (7) C15—H15 0.9500
C3—H3 1.0000 C16—H16 0.9500
N1—Pd1—N1i 180.0 (2) C2—C3—H3 126.2
N1—Pd1—Cl1 90.75 (13) Fe1—C3—H3 126.2
N1i—Pd1—Cl1 89.25 (13) C5—C4—C3 108.7 (5)
N1—Pd1—Cl1i 89.25 (13) C5—C4—Fe1 69.5 (3)
N1i—Pd1—Cl1i 90.75 (13) C3—C4—Fe1 69.4 (3)
Cl1—Pd1—Cl1i 180.0 C5—C4—H4 125.6
C2—Fe1—C10 167.2 (2) C3—C4—H4 125.6
C2—Fe1—C6 41.74 (19) Fe1—C4—H4 125.6
C10—Fe1—C6 127.5 (2) C6—C5—C4 108.6 (4)
C2—Fe1—C9 150.6 (2) C6—C5—Fe1 69.5 (3)
C10—Fe1—C9 41.2 (2) C4—C5—Fe1 70.0 (3)
C6—Fe1—C9 166.4 (2) C6—C5—H5 125.7
C2—Fe1—C3 41.0 (2) C4—C5—H5 125.7
C10—Fe1—C3 150.1 (2) Fe1—C5—H5 125.7
C6—Fe1—C3 69.4 (2) C5—C6—C2 107.3 (5)
C9—Fe1—C3 117.1 (2) C5—C6—Fe1 70.0 (3)
C2—Fe1—C5 68.9 (2) C2—C6—Fe1 68.9 (3)
C10—Fe1—C5 107.0 (2) C5—C6—H6 126.3
C6—Fe1—C5 40.5 (2) C2—C6—H6 126.3
C9—Fe1—C5 128.5 (2) Fe1—C6—H6 126.3
C3—Fe1—C5 68.7 (2) C11—C7—C8 108.6 (5)
C2—Fe1—C7 108.9 (2) C11—C7—Fe1 70.0 (3)
C10—Fe1—C7 68.2 (2) C8—C7—Fe1 70.4 (3)
C6—Fe1—C7 117.6 (2) C11—C7—H7 125.7
C9—Fe1—C7 68.4 (2) C8—C7—H7 125.7
C3—Fe1—C7 130.3 (2) Fe1—C7—H7 125.7
C5—Fe1—C7 150.1 (2) C9—C8—C7 107.4 (5)
C2—Fe1—C11 129.4 (2) C9—C8—Fe1 68.8 (3)
C10—Fe1—C11 40.5 (3) C7—C8—Fe1 68.9 (3)
C6—Fe1—C11 107.4 (2) C9—C8—H8 126.3
C9—Fe1—C11 68.6 (2) C7—C8—H8 126.3
C3—Fe1—C11 168.5 (2) Fe1—C8—H8 126.3
C5—Fe1—C11 116.6 (2) C8—C9—C10 107.9 (5)
C7—Fe1—C11 40.4 (2) C8—C9—Fe1 70.7 (3)
C2—Fe1—C4 68.5 (2) C10—C9—Fe1 69.2 (3)
C10—Fe1—C4 116.8 (2) C8—C9—H9 126.1
C6—Fe1—C4 68.5 (2) C10—C9—H9 126.1
C9—Fe1—C4 108.1 (2) Fe1—C9—H9 126.1
C3—Fe1—C4 40.5 (2) C11—C10—C9 108.0 (5)
C5—Fe1—C4 40.5 (2) C11—C10—Fe1 70.3 (4)
C7—Fe1—C4 168.6 (2) C9—C10—Fe1 69.6 (3)
C11—Fe1—C4 149.7 (2) C11—C10—H10 126.0
C2—Fe1—C8 118.0 (2) C9—C10—H10 126.0
C10—Fe1—C8 68.5 (2) Fe1—C10—H10 126.0
C6—Fe1—C8 151.5 (2) C10—C11—C7 108.1 (5)
C9—Fe1—C8 40.5 (2) C10—C11—Fe1 69.2 (4)
C3—Fe1—C8 109.0 (2) C7—C11—Fe1 69.6 (3)
C5—Fe1—C8 167.4 (2) C10—C11—H11 126.0
C7—Fe1—C8 40.6 (2) C7—C11—H11 126.0
C11—Fe1—C8 68.2 (2) Fe1—C11—H11 126.0
C4—Fe1—C8 129.8 (2) N1—C12—C13 111.9 (5)
C13—O1—C16 105.9 (5) N1—C12—H12A 109.2
C1—N1—C12 116.9 (5) C13—C12—H12A 109.2
C1—N1—Pd1 127.9 (4) N1—C12—H12B 109.2
C12—N1—Pd1 115.1 (3) C13—C12—H12B 109.2
N1—C1—C2 127.6 (5) H12A—C12—H12B 107.9
N1—C1—H1 116.2 C14—C13—O1 109.9 (5)
C2—C1—H1 116.2 C14—C13—C12 134.6 (6)
C3—C2—C1 130.9 (5) O1—C13—C12 115.5 (4)
C3—C2—C6 107.7 (5) C13—C14—C15 106.6 (5)
C1—C2—C6 120.8 (5) C13—C14—H14 126.7
C3—C2—Fe1 69.9 (3) C15—C14—H14 126.7
C1—C2—Fe1 119.3 (4) C16—C15—C14 107.5 (6)
C6—C2—Fe1 69.3 (3) C16—C15—H15 126.2
C4—C3—C2 107.7 (4) C14—C15—H15 126.2
C4—C3—Fe1 70.0 (3) C15—C16—O1 110.0 (6)
C2—C3—Fe1 69.1 (3) C15—C16—H16 125.0
C4—C3—H3 126.2 O1—C16—H16 125.0
Cl1—Pd1—N1—C1 75.8 (5) C5—Fe1—C6—C2 −118.7 (5)
Cl1i—Pd1—N1—C1 −104.2 (5) C7—Fe1—C6—C2 87.9 (4)
Cl1—Pd1—N1—C12 −106.5 (4) C11—Fe1—C6—C2 130.4 (3)
Cl1i—Pd1—N1—C12 73.5 (4) C4—Fe1—C6—C2 −81.4 (3)
C12—N1—C1—C2 178.8 (5) C8—Fe1—C6—C2 54.2 (6)
Pd1—N1—C1—C2 −3.5 (8) C2—Fe1—C7—C11 129.3 (4)
N1—C1—C2—C3 9.7 (10) C10—Fe1—C7—C11 −37.4 (4)
N1—C1—C2—C6 179.8 (5) C6—Fe1—C7—C11 84.6 (4)
N1—C1—C2—Fe1 97.6 (6) C9—Fe1—C7—C11 −81.9 (4)
C10—Fe1—C2—C3 −154.9 (9) C3—Fe1—C7—C11 170.3 (3)
C6—Fe1—C2—C3 −118.9 (4) C5—Fe1—C7—C11 48.9 (6)
C9—Fe1—C2—C3 51.3 (6) C4—Fe1—C7—C11 −155.9 (11)
C5—Fe1—C2—C3 −81.3 (3) C8—Fe1—C7—C11 −119.3 (5)
C7—Fe1—C2—C3 130.5 (3) C2—Fe1—C7—C8 −111.3 (4)
C11—Fe1—C2—C3 171.0 (3) C10—Fe1—C7—C8 81.9 (4)
C4—Fe1—C2—C3 −37.7 (3) C6—Fe1—C7—C8 −156.0 (3)
C8—Fe1—C2—C3 87.1 (3) C9—Fe1—C7—C8 37.4 (3)
C10—Fe1—C2—C1 78.6 (11) C3—Fe1—C7—C8 −70.4 (4)
C6—Fe1—C2—C1 114.6 (6) C5—Fe1—C7—C8 168.3 (4)
C9—Fe1—C2—C1 −75.2 (7) C11—Fe1—C7—C8 119.3 (5)
C3—Fe1—C2—C1 −126.5 (5) C4—Fe1—C7—C8 −36.5 (14)
C5—Fe1—C2—C1 152.2 (5) C11—C7—C8—C9 1.6 (7)
C7—Fe1—C2—C1 4.0 (5) Fe1—C7—C8—C9 −58.2 (4)
C11—Fe1—C2—C1 44.5 (5) C11—C7—C8—Fe1 59.8 (4)
C4—Fe1—C2—C1 −164.1 (5) C2—Fe1—C8—C9 −153.7 (3)
C8—Fe1—C2—C1 −39.4 (5) C10—Fe1—C8—C9 38.4 (4)
C10—Fe1—C2—C6 −36.0 (11) C6—Fe1—C8—C9 168.5 (4)
C9—Fe1—C2—C6 170.2 (4) C3—Fe1—C8—C9 −109.8 (4)
C3—Fe1—C2—C6 118.9 (4) C5—Fe1—C8—C9 −32.8 (12)
C5—Fe1—C2—C6 37.6 (3) C7—Fe1—C8—C9 119.6 (5)
C7—Fe1—C2—C6 −110.6 (4) C11—Fe1—C8—C9 82.1 (4)
C11—Fe1—C2—C6 −70.1 (4) C4—Fe1—C8—C9 −69.3 (4)
C4—Fe1—C2—C6 81.3 (3) C2—Fe1—C8—C7 86.7 (4)
C8—Fe1—C2—C6 −154.0 (3) C10—Fe1—C8—C7 −81.2 (4)
C1—C2—C3—C4 171.5 (5) C6—Fe1—C8—C7 49.0 (6)
C6—C2—C3—C4 0.4 (6) C9—Fe1—C8—C7 −119.6 (5)
Fe1—C2—C3—C4 59.6 (4) C3—Fe1—C8—C7 130.6 (3)
C1—C2—C3—Fe1 111.8 (6) C5—Fe1—C8—C7 −152.4 (9)
C6—C2—C3—Fe1 −59.3 (4) C11—Fe1—C8—C7 −37.5 (4)
C2—Fe1—C3—C4 −119.0 (4) C4—Fe1—C8—C7 171.2 (3)
C10—Fe1—C3—C4 50.1 (5) C7—C8—C9—C10 −1.2 (6)
C6—Fe1—C3—C4 −80.5 (3) Fe1—C8—C9—C10 −59.5 (4)
C9—Fe1—C3—C4 86.5 (4) C7—C8—C9—Fe1 58.3 (4)
C5—Fe1—C3—C4 −37.0 (3) C2—Fe1—C9—C8 52.8 (6)
C7—Fe1—C3—C4 170.2 (3) C10—Fe1—C9—C8 −118.7 (5)
C11—Fe1—C3—C4 −156.4 (10) C6—Fe1—C9—C8 −156.1 (9)
C8—Fe1—C3—C4 129.8 (3) C3—Fe1—C9—C8 87.9 (4)
C10—Fe1—C3—C2 169.1 (4) C5—Fe1—C9—C8 171.3 (3)
C6—Fe1—C3—C2 38.5 (3) C7—Fe1—C9—C8 −37.5 (4)
C9—Fe1—C3—C2 −154.5 (3) C11—Fe1—C9—C8 −81.1 (4)
C5—Fe1—C3—C2 82.0 (3) C4—Fe1—C9—C8 130.9 (3)
C7—Fe1—C3—C2 −70.8 (4) C2—Fe1—C9—C10 171.5 (4)
C11—Fe1—C3—C2 −37.4 (11) C6—Fe1—C9—C10 −37.4 (12)
C4—Fe1—C3—C2 119.0 (4) C3—Fe1—C9—C10 −153.4 (3)
C8—Fe1—C3—C2 −111.2 (3) C5—Fe1—C9—C10 −70.0 (4)
C2—C3—C4—C5 −0.6 (6) C7—Fe1—C9—C10 81.2 (4)
Fe1—C3—C4—C5 58.5 (4) C11—Fe1—C9—C10 37.6 (4)
C2—C3—C4—Fe1 −59.0 (4) C4—Fe1—C9—C10 −110.4 (4)
C2—Fe1—C4—C5 −82.3 (3) C8—Fe1—C9—C10 118.7 (5)
C10—Fe1—C4—C5 84.9 (4) C8—C9—C10—C11 0.4 (7)
C6—Fe1—C4—C5 −37.3 (3) Fe1—C9—C10—C11 −60.0 (4)
C9—Fe1—C4—C5 128.7 (3) C8—C9—C10—Fe1 60.4 (4)
C3—Fe1—C4—C5 −120.4 (5) C2—Fe1—C10—C11 −41.9 (11)
C7—Fe1—C4—C5 −161.3 (11) C6—Fe1—C10—C11 −71.4 (4)
C11—Fe1—C4—C5 50.5 (6) C9—Fe1—C10—C11 118.9 (5)
C8—Fe1—C4—C5 168.5 (3) C3—Fe1—C10—C11 172.1 (4)
C2—Fe1—C4—C3 38.1 (3) C5—Fe1—C10—C11 −111.3 (4)
C10—Fe1—C4—C3 −154.6 (3) C7—Fe1—C10—C11 37.4 (3)
C6—Fe1—C4—C3 83.1 (3) C4—Fe1—C10—C11 −153.9 (3)
C9—Fe1—C4—C3 −110.8 (3) C8—Fe1—C10—C11 81.2 (4)
C5—Fe1—C4—C3 120.4 (5) C2—Fe1—C10—C9 −160.8 (9)
C7—Fe1—C4—C3 −40.8 (13) C6—Fe1—C10—C9 169.6 (3)
C11—Fe1—C4—C3 170.9 (4) C3—Fe1—C10—C9 53.2 (6)
C8—Fe1—C4—C3 −71.1 (4) C5—Fe1—C10—C9 129.8 (4)
C3—C4—C5—C6 0.5 (6) C7—Fe1—C10—C9 −81.6 (4)
Fe1—C4—C5—C6 59.0 (4) C11—Fe1—C10—C9 −118.9 (5)
C3—C4—C5—Fe1 −58.5 (4) C4—Fe1—C10—C9 87.2 (4)
C2—Fe1—C5—C6 −38.7 (3) C8—Fe1—C10—C9 −37.7 (4)
C10—Fe1—C5—C6 128.5 (3) C9—C10—C11—C7 0.6 (7)
C9—Fe1—C5—C6 168.8 (3) Fe1—C10—C11—C7 −59.0 (4)
C3—Fe1—C5—C6 −82.9 (3) C9—C10—C11—Fe1 59.6 (4)
C7—Fe1—C5—C6 52.8 (6) C8—C7—C11—C10 −1.3 (7)
C11—Fe1—C5—C6 85.9 (4) Fe1—C7—C11—C10 58.7 (4)
C4—Fe1—C5—C6 −119.9 (4) C8—C7—C11—Fe1 −60.1 (4)
C8—Fe1—C5—C6 −164.5 (9) C2—Fe1—C11—C10 169.0 (3)
C2—Fe1—C5—C4 81.2 (3) C6—Fe1—C11—C10 128.0 (3)
C10—Fe1—C5—C4 −111.7 (4) C9—Fe1—C11—C10 −38.3 (3)
C6—Fe1—C5—C4 119.9 (4) C3—Fe1—C11—C10 −159.9 (9)
C9—Fe1—C5—C4 −71.3 (4) C5—Fe1—C11—C10 85.2 (4)
C3—Fe1—C5—C4 37.0 (3) C7—Fe1—C11—C10 −119.6 (5)
C7—Fe1—C5—C4 172.7 (4) C4—Fe1—C11—C10 51.1 (6)
C11—Fe1—C5—C4 −154.2 (3) C8—Fe1—C11—C10 −82.0 (4)
C8—Fe1—C5—C4 −44.6 (11) C2—Fe1—C11—C7 −71.4 (4)
C4—C5—C6—C2 −0.3 (6) C10—Fe1—C11—C7 119.6 (5)
Fe1—C5—C6—C2 59.0 (4) C6—Fe1—C11—C7 −112.4 (4)
C4—C5—C6—Fe1 −59.3 (4) C9—Fe1—C11—C7 81.4 (4)
C3—C2—C6—C5 −0.1 (6) C3—Fe1—C11—C7 −40.3 (12)
C1—C2—C6—C5 −172.2 (5) C5—Fe1—C11—C7 −155.2 (4)
Fe1—C2—C6—C5 −59.7 (4) C4—Fe1—C11—C7 170.8 (4)
C3—C2—C6—Fe1 59.6 (4) C8—Fe1—C11—C7 37.7 (4)
C1—C2—C6—Fe1 −112.6 (5) C1—N1—C12—C13 −105.6 (6)
C2—Fe1—C6—C5 118.7 (5) Pd1—N1—C12—C13 76.5 (5)
C10—Fe1—C6—C5 −70.7 (4) C16—O1—C13—C14 1.4 (7)
C9—Fe1—C6—C5 −40.4 (11) C16—O1—C13—C12 −179.1 (5)
C3—Fe1—C6—C5 80.9 (3) N1—C12—C13—C14 −117.7 (7)
C7—Fe1—C6—C5 −153.4 (3) N1—C12—C13—O1 62.9 (7)
C11—Fe1—C6—C5 −110.8 (3) O1—C13—C14—C15 −1.0 (7)
C4—Fe1—C6—C5 37.3 (3) C12—C13—C14—C15 179.6 (7)
C8—Fe1—C6—C5 173.0 (4) C13—C14—C15—C16 0.2 (8)
C10—Fe1—C6—C2 170.6 (3) C14—C15—C16—O1 0.7 (9)
C9—Fe1—C6—C2 −159.1 (9) C13—O1—C16—C15 −1.3 (8)
C3—Fe1—C6—C2 −37.9 (3)

Symmetry code: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2391).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Bruker (2005). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2006). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Lu, J.-Y., Yu, A.-J., Wu, Y.-J., Zhu, Y., Du, C.-X. & Yang, H.-W. (2007). Polyhedron, 26, 2629–2637.
  5. Mu, B., Li, T., Xu, W., Zeng, G., Liu, P. & Wu, Y. (2007). Tetrahedron, 63, 11475–11488.
  6. Nelana, S. M., Cloete, J., Lisensky, G. C., Nordlander, E., Guzei, I. A., Mapolie, S. F. & Darkwa, J. (2008). J. Mol. Catal. A Chem. 285, 72–78.
  7. Neuse, E. W., Meirim, M. G. & Blom, N. F. (1988). Organometallics 7, 2562–2566.
  8. Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56.
  9. Pou, D., Platero-Plats, A. E., Perez, S., Lopez, C., Solans, X., Font-Bardia, M., van Leeuwen, P. W. N. M., Strijdonck, G. P. F. & Freixa, Z. (2007). J. Organomet. Chem. 692, 5017–5025.
  10. Rajput, J., Hutton, A. T., Moss, J. R., Su, H. & Imrie, C. (2006). J. Organomet. Chem. 691, 4573–4588.
  11. Rajput, J., Moss, J. R., Hutton, A. T., Hendricks, D. T., Arendse, C. E. & Imrie, C. (2004). J. Organomet. Chem. 689, 1553–1568.
  12. Salo, E. V. & Guan, Z. (2003). Organometallics 22, 5033–5046.
  13. Sheldrick, G. M. (2008a). SADABS University of Göttingen, Germany.
  14. Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Stang, P. J., Olenyuk, B., Fan, J. & Arif, A. M. (1996). Organometallics 15, 904–908.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block, global. DOI: 10.1107/S1600536812009191/pk2391sup1.cif

e-68-0m387-sup1.cif (26.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009191/pk2391Isup2.hkl

e-68-0m387-Isup2.hkl (127.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES