Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 10;68(Pt 4):m390–m391. doi: 10.1107/S1600536812009592

Bis{S-benzyl 3-[(phen­yl)(pyridin-2-yl)methyl­idene]dithio­carbazato}zinc acetonitrile monosolvate

Thahira B S A Ravoof a,*, Siti Aminah Omar a, Mohamed Ibrahim Mohamed Tahir a, Karen A Crouse a
PMCID: PMC3343804  PMID: 22589778

Abstract

In the title compound, [Zn(C20H16N3S2)2]·CH3CN, two different Schiff base moieties coordinate to the central ZnII ion as tridentate N,N′,S-chelating ligands, creating a distorted octa­hedral environment [the smallest angle being 73.24 (6)° and the widest angle being 155.73 (7)°], with the two S atoms in cis positions. The dihedral angle between the mean planes of the two coordinating ligands is 83.65 (5)°. The crystal packing is consolidated by weak C—H⋯N hydrogen-bonding inter­actions.

Related literature  

For background to the coordination chemistry of hydrazine carbodithio­ates, see: Ravoof et al. (2010). For the synthesis, see: Ravoof et al. (2004). For related structures, see: Hossain et al. (1996); Paulus et al. (2011). For H-atom treatment in the refinement, see: Cooper et al. (2010).graphic file with name e-68-0m390-scheme1.jpg

Experimental  

Crystal data  

  • [Zn(C20H16N3S2)2]·C2H3N

  • M r = 831.43

  • Monoclinic, Inline graphic

  • a = 12.5918 (3) Å

  • b = 14.0025 (3) Å

  • c = 22.2129 (5) Å

  • β = 100.429 (2)°

  • V = 3851.79 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 150 K

  • 0.27 × 0.18 × 0.04 mm

Data collection  

  • Oxford Diffraction Gemini CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.85, T max = 0.96

  • 17196 measured reflections

  • 8678 independent reflections

  • 7022 reflections with I > 2.0σ(I)

  • R int = 0.032

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.081

  • S = 0.99

  • 8677 reflections

  • 487 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812009592/wm2598sup1.cif

e-68-0m390-sup1.cif (28.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009592/wm2598Isup2.hkl

e-68-0m390-Isup2.hkl (543.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Zn1—N102 2.1346 (17)
Zn1—S105 2.4403 (6)
Zn1—N115 2.2288 (17)
Zn1—N202 2.1160 (17)
Zn1—S205 2.4516 (6)
Zn1—N215 2.3188 (17)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C216—H2161⋯N103 0.95 2.62 3.285 (3) 127

Acknowledgments

Support for this project came from Universiti Putra Malaysia (UPM) under the research University Grant Scheme (RUGS No. 05–01-11–1243RU) and the Malaysian Fundamental Research Grant Scheme (FRGS No: 01–03-11–986FR). SAO wishes to thank UPM for a Graduate Research Fellowship award.

supplementary crystallographic information

Comment

The title compound was preferentially formed during the synthesis of the tridentate Schiff base with zinc saccharinate, by eliminating the saccharinate anion and instead coordinating one metal ion with two tridentate deprotonated Schiff base moieties. Background on the coordination chemistry of hydrazine carbodithioates is given by Ravoof et al. (2010). Similar Cu(II) complexes have been previously synthesized by Hossain et al. (1996).

There is one independent molecule in the asymmetric unit which contains the ZnII ion coordinated to two tridentate Schiff bases via the pyridyl nitrogen (N115, N215), azomethine nitrogen (N102, N202) and thiolate sulfur (S105, S205) atoms (Fig. 1). A solvent acetonitrile molecule in also present in the lattice. The coordination of the metal ion is distorted octahedral with equatorial angles ranging from 73.24 (6)° to 120.54 (5)°. The angle between the planes containing the atoms of the tridentate chelating rings is 83.65 (5). The planes containing the benzyl rings attached to the sulfur atom on both Schiff bases are almost parallel to each other with an angle of 16.41 (10). Similarly, the benzyl rings on the ketone moiety of the two Schiff bases are also almost parallel with an angle of 11.69 (9)°. However, the pyridine rings of the ketone moiety of the two Schiff bases are at an angle of 66.52 (10)°.

The packing diagram viewed along the b axis shows an arrangement where the benzyl ring of the ketone moiety of Schiff base 2 are arranged in such a way that it is facing each other between molecules. The crystal packing is consolidated by weak C—H···N hydrogen bonding interactions (Table 2).

For related structures, see: Hossain et al. (1996); Ravoof et al. (2010); Paulus et al. (2011).

Experimental

Zinc saccharinate, [Zn(sac)2(H2O)4]. 2H2O was prepared according to the method outlined in Ravoof et al. (2004). The 2-benzoylpyridine Schiff base of S-benzyldithiocarbazate was prepared following the method by Hossain et al. (1996). The Schiff base was dissolved in acetonitrile (50 ml) and mixed with an equimolar quantity of zinc saccharinate in acetonitrile (25 ml). The resulting mixture was heated on a water bath until the volume reduced to about 30 ml. On standing overnight, the mixture yielded orange crystals which were filtered off, washed with acetonitrile and dried in a desiccator over anhydrous silica gel, overnight. Crystals of the zinc complex suitable for X-ray diffraction analysis were obtained by recrystallisation from a mixture of acetonitrile, THF and chloroform. Slow evaporation over 3 weeks yielded crystals suitable for diffraction experiments.

Refinement

H atoms were all located in difference maps, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints (Cooper et al., 2010).

Figures

Fig. 1.

Fig. 1.

The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.

Fig. 2.

Fig. 2.

Molecular packing diagram of the title compound viewed along the b axis. Hydrogen atoms are omitted for clarity.

Crystal data

[Zn(C20H16N3S2)2]·C2H3N F(000) = 1720
Mr = 831.43 Dx = 1.434 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 6190 reflections
a = 12.5918 (3) Å θ = 2–29°
b = 14.0025 (3) Å µ = 0.90 mm1
c = 22.2129 (5) Å T = 150 K
β = 100.429 (2)° Prismatic, yellow
V = 3851.79 (14) Å3 0.27 × 0.18 × 0.04 mm
Z = 4

Data collection

Oxford Diffraction Gemini CCD diffractometer 8678 independent reflections
Radiation source: sealed X-ray tube, Oxford Diffraction Enhance X-ray 7022 reflections with I > 2.0σ(I)
Graphite monochromator Rint = 0.032
φ scans θmax = 28.8°, θmin = 2.2°
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) h = −12→17
Tmin = 0.85, Tmax = 0.96 k = −17→17
17196 measured reflections l = −28→30

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.081 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.03P)2 + 2.81P], where P = (max(Fo2,0) + 2Fc2)/3
S = 0.99 (Δ/σ)max = 0.001
8677 reflections Δρmax = 0.63 e Å3
487 parameters Δρmin = −0.56 e Å3
0 restraints

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105–107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.52827 (2) 0.992001 (17) 0.315553 (11) 0.0157
C101 0.54238 (16) 0.96909 (14) 0.18279 (9) 0.0151
N102 0.57756 (13) 1.02145 (12) 0.23042 (8) 0.0145
N103 0.66583 (14) 1.07951 (12) 0.22781 (8) 0.0165
C104 0.69996 (17) 1.12459 (14) 0.27968 (9) 0.0170
S105 0.64556 (5) 1.12917 (4) 0.34537 (3) 0.0223
S106 0.82077 (5) 1.18896 (4) 0.28549 (3) 0.0218
C107 0.86887 (19) 1.16235 (16) 0.21458 (10) 0.0227
C108 0.92336 (18) 1.06688 (16) 0.21381 (10) 0.0201
C109 1.02461 (19) 1.04967 (18) 0.24911 (11) 0.0271
C110 1.0748 (2) 0.96228 (19) 0.24752 (11) 0.0306
C111 1.0238 (2) 0.88970 (18) 0.21068 (11) 0.0276
C112 0.92326 (19) 0.90545 (17) 0.17534 (10) 0.0257
C113 0.87376 (18) 0.99394 (16) 0.17643 (10) 0.0212
C114 0.45800 (16) 0.89875 (15) 0.19093 (9) 0.0160
N115 0.43995 (14) 0.88792 (12) 0.24871 (8) 0.0173
C116 0.36456 (17) 0.82562 (16) 0.25873 (10) 0.0211
C117 0.30530 (18) 0.77079 (16) 0.21274 (11) 0.0247
C118 0.32364 (19) 0.78172 (17) 0.15367 (11) 0.0264
C119 0.40036 (18) 0.84708 (16) 0.14234 (10) 0.0220
C120 0.58251 (17) 0.97419 (15) 0.12405 (9) 0.0169
C121 0.62547 (18) 0.89391 (16) 0.10049 (10) 0.0218
C122 0.6655 (2) 0.90042 (18) 0.04628 (11) 0.0288
C123 0.6611 (2) 0.98605 (18) 0.01499 (10) 0.0289
C124 0.6161 (2) 1.06568 (18) 0.03757 (10) 0.0281
C125 0.57791 (19) 1.06006 (16) 0.09211 (10) 0.0223
C201 0.59004 (16) 0.84982 (14) 0.41713 (9) 0.0150
N202 0.51528 (13) 0.90998 (12) 0.39390 (8) 0.0157
N203 0.42040 (14) 0.90721 (13) 0.41716 (8) 0.0193
C204 0.34919 (17) 0.96989 (16) 0.39193 (10) 0.0189
S205 0.35673 (4) 1.05422 (4) 0.33664 (3) 0.0213
S206 0.22568 (5) 0.96742 (5) 0.41839 (3) 0.0309
C207 0.2312 (2) 0.85102 (19) 0.45623 (11) 0.0322
C208 0.22822 (18) 0.76718 (18) 0.41302 (11) 0.0276
C209 0.14642 (19) 0.7582 (2) 0.36166 (12) 0.0346
C210 0.1418 (2) 0.6803 (2) 0.32314 (12) 0.0394
C211 0.2202 (2) 0.6104 (2) 0.33423 (13) 0.0409
C212 0.3031 (2) 0.61924 (19) 0.38429 (13) 0.0391
C213 0.3062 (2) 0.69618 (18) 0.42340 (11) 0.0310
C214 0.68809 (17) 0.85023 (14) 0.38898 (9) 0.0155
N215 0.67706 (14) 0.89154 (12) 0.33326 (8) 0.0163
C216 0.76099 (17) 0.88769 (15) 0.30420 (10) 0.0192
C217 0.85827 (18) 0.84506 (16) 0.32896 (10) 0.0220
C218 0.87086 (17) 0.80787 (15) 0.38733 (10) 0.0208
C219 0.78445 (17) 0.81014 (15) 0.41769 (10) 0.0192
C220 0.58100 (16) 0.77931 (15) 0.46577 (9) 0.0157
C221 0.59856 (18) 0.68281 (16) 0.45448 (10) 0.0204
C222 0.58656 (19) 0.61414 (16) 0.49780 (11) 0.0245
C223 0.55935 (19) 0.64118 (17) 0.55269 (10) 0.0260
C224 0.54377 (18) 0.73704 (17) 0.56474 (10) 0.0237
C225 0.55425 (17) 0.80586 (16) 0.52144 (9) 0.0189
C301 0.5638 (2) 0.54258 (19) 0.08460 (13) 0.0421
C302 0.5150 (2) 0.63022 (19) 0.05801 (11) 0.0308
N303 0.4777 (2) 0.69814 (17) 0.03609 (10) 0.0421
H1071 0.9213 1.2132 0.2111 0.0279*
H1072 0.8069 1.1671 0.1809 0.0280*
H1091 1.0597 1.0995 0.2750 0.0331*
H1101 1.1443 0.9511 0.2701 0.0389*
H1111 1.0583 0.8288 0.2094 0.0346*
H1121 0.8877 0.8560 0.1500 0.0322*
H1131 0.8041 1.0054 0.1510 0.0267*
H1161 0.3528 0.8199 0.3002 0.0264*
H1171 0.2530 0.7272 0.2224 0.0297*
H1181 0.2835 0.7452 0.1212 0.0328*
H1191 0.4138 0.8567 0.1019 0.0273*
H1211 0.6288 0.8342 0.1222 0.0266*
H1221 0.6965 0.8447 0.0307 0.0360*
H1231 0.6890 0.9897 −0.0220 0.0349*
H1241 0.6106 1.1255 0.0160 0.0344*
H1251 0.5479 1.1150 0.1079 0.0278*
H2071 0.2968 0.8479 0.4886 0.0407*
H2072 0.1655 0.8490 0.4758 0.0406*
H2091 0.0920 0.8079 0.3527 0.0422*
H2101 0.0845 0.6752 0.2897 0.0485*
H2111 0.2179 0.5566 0.3074 0.0489*
H2121 0.3592 0.5728 0.3916 0.0497*
H2131 0.3634 0.7018 0.4592 0.0396*
H2161 0.7536 0.9149 0.2645 0.0237*
H2171 0.9146 0.8431 0.3063 0.0266*
H2181 0.9384 0.7810 0.4067 0.0256*
H2191 0.7890 0.7845 0.4586 0.0233*
H2211 0.6186 0.6641 0.4165 0.0255*
H2221 0.5970 0.5479 0.4891 0.0300*
H2231 0.5512 0.5940 0.5829 0.0323*
H2241 0.5264 0.7553 0.6038 0.0282*
H2251 0.5427 0.8719 0.5299 0.0240*
H3012 0.5394 0.5297 0.1234 0.0643*
H3011 0.6406 0.5507 0.0906 0.0637*
H3013 0.5432 0.4920 0.0566 0.0642*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.01798 (13) 0.01668 (12) 0.01312 (12) 0.00072 (10) 0.00433 (10) 0.00122 (10)
C101 0.0149 (10) 0.0139 (10) 0.0156 (10) 0.0010 (8) 0.0004 (8) 0.0023 (8)
N102 0.0142 (8) 0.0126 (8) 0.0155 (8) −0.0019 (7) −0.0003 (7) 0.0011 (7)
N103 0.0180 (9) 0.0146 (9) 0.0167 (9) −0.0030 (7) 0.0022 (7) 0.0005 (7)
C104 0.0204 (11) 0.0111 (10) 0.0189 (11) 0.0026 (8) 0.0023 (9) 0.0022 (8)
S105 0.0278 (3) 0.0216 (3) 0.0190 (3) −0.0035 (2) 0.0079 (2) −0.0067 (2)
S106 0.0242 (3) 0.0198 (3) 0.0209 (3) −0.0079 (2) 0.0026 (2) −0.0038 (2)
C107 0.0239 (12) 0.0229 (12) 0.0221 (11) −0.0070 (10) 0.0060 (10) 0.0035 (9)
C108 0.0207 (11) 0.0233 (12) 0.0178 (11) −0.0053 (9) 0.0077 (9) 0.0037 (9)
C109 0.0259 (12) 0.0316 (13) 0.0232 (12) −0.0078 (11) 0.0029 (10) −0.0008 (10)
C110 0.0218 (12) 0.0416 (15) 0.0280 (13) 0.0016 (11) 0.0032 (11) 0.0045 (11)
C111 0.0287 (13) 0.0325 (14) 0.0241 (12) 0.0064 (11) 0.0113 (11) 0.0029 (10)
C112 0.0284 (13) 0.0291 (13) 0.0215 (12) −0.0023 (11) 0.0101 (10) −0.0046 (10)
C113 0.0178 (11) 0.0282 (12) 0.0181 (11) −0.0031 (9) 0.0044 (9) −0.0012 (9)
C114 0.0156 (10) 0.0150 (10) 0.0166 (10) 0.0012 (8) 0.0009 (9) −0.0003 (8)
N115 0.0180 (9) 0.0168 (9) 0.0178 (9) −0.0003 (7) 0.0050 (8) −0.0008 (7)
C116 0.0220 (11) 0.0205 (11) 0.0227 (11) −0.0017 (9) 0.0098 (10) −0.0003 (9)
C117 0.0195 (11) 0.0230 (12) 0.0333 (13) −0.0069 (10) 0.0091 (10) −0.0027 (10)
C118 0.0226 (12) 0.0273 (12) 0.0283 (13) −0.0085 (10) 0.0019 (11) −0.0059 (10)
C119 0.0224 (11) 0.0243 (12) 0.0190 (11) −0.0057 (10) 0.0031 (10) −0.0012 (9)
C120 0.0163 (10) 0.0204 (11) 0.0128 (10) −0.0057 (9) −0.0007 (8) −0.0006 (8)
C121 0.0255 (12) 0.0211 (11) 0.0185 (11) −0.0004 (9) 0.0031 (10) −0.0003 (9)
C122 0.0303 (13) 0.0330 (14) 0.0243 (12) −0.0030 (11) 0.0082 (11) −0.0088 (11)
C123 0.0296 (13) 0.0420 (15) 0.0164 (11) −0.0131 (12) 0.0077 (10) −0.0047 (11)
C124 0.0373 (14) 0.0281 (13) 0.0182 (11) −0.0119 (11) 0.0035 (11) 0.0046 (10)
C125 0.0290 (12) 0.0214 (11) 0.0156 (11) −0.0047 (10) 0.0021 (10) −0.0004 (9)
C201 0.0161 (10) 0.0152 (10) 0.0137 (10) −0.0003 (8) 0.0028 (9) −0.0009 (8)
N202 0.0144 (8) 0.0188 (9) 0.0151 (9) 0.0016 (7) 0.0056 (7) −0.0001 (7)
N203 0.0153 (9) 0.0253 (10) 0.0192 (9) 0.0040 (8) 0.0083 (8) 0.0017 (8)
C204 0.0176 (10) 0.0238 (11) 0.0164 (10) 0.0037 (9) 0.0058 (9) −0.0041 (9)
S205 0.0210 (3) 0.0203 (3) 0.0225 (3) 0.0064 (2) 0.0035 (2) 0.0022 (2)
S206 0.0202 (3) 0.0392 (4) 0.0365 (3) 0.0097 (3) 0.0140 (3) 0.0043 (3)
C207 0.0254 (13) 0.0447 (16) 0.0299 (13) 0.0013 (12) 0.0136 (11) 0.0072 (12)
C208 0.0206 (12) 0.0377 (14) 0.0267 (12) −0.0046 (11) 0.0101 (10) 0.0079 (11)
C209 0.0185 (12) 0.0499 (17) 0.0352 (14) −0.0056 (12) 0.0048 (11) 0.0121 (13)
C210 0.0319 (15) 0.0522 (18) 0.0321 (14) −0.0204 (14) 0.0006 (12) 0.0077 (13)
C211 0.0484 (17) 0.0385 (16) 0.0355 (15) −0.0211 (14) 0.0063 (14) 0.0019 (12)
C212 0.0406 (16) 0.0307 (14) 0.0448 (16) −0.0017 (12) 0.0051 (14) 0.0070 (12)
C213 0.0270 (13) 0.0353 (14) 0.0298 (13) −0.0052 (11) 0.0028 (11) 0.0077 (11)
C214 0.0160 (10) 0.0133 (10) 0.0177 (10) 0.0007 (8) 0.0047 (9) −0.0003 (8)
N215 0.0184 (9) 0.0145 (9) 0.0159 (9) 0.0017 (7) 0.0029 (8) 0.0022 (7)
C216 0.0216 (11) 0.0183 (11) 0.0200 (11) 0.0002 (9) 0.0098 (9) 0.0024 (9)
C217 0.0183 (11) 0.0235 (12) 0.0263 (12) 0.0019 (9) 0.0094 (10) 0.0000 (10)
C218 0.0146 (10) 0.0190 (11) 0.0286 (12) 0.0032 (9) 0.0033 (10) 0.0020 (9)
C219 0.0193 (11) 0.0200 (11) 0.0184 (11) −0.0004 (9) 0.0037 (9) 0.0031 (9)
C220 0.0119 (10) 0.0192 (10) 0.0161 (10) 0.0022 (8) 0.0027 (8) 0.0030 (8)
C221 0.0215 (11) 0.0228 (11) 0.0187 (11) 0.0015 (9) 0.0085 (10) −0.0004 (9)
C222 0.0295 (13) 0.0168 (11) 0.0295 (12) 0.0035 (10) 0.0114 (11) 0.0027 (9)
C223 0.0283 (12) 0.0268 (12) 0.0245 (12) 0.0029 (10) 0.0089 (11) 0.0099 (10)
C224 0.0274 (12) 0.0286 (12) 0.0166 (11) 0.0044 (10) 0.0083 (10) 0.0022 (9)
C225 0.0184 (11) 0.0206 (11) 0.0176 (11) 0.0024 (9) 0.0030 (9) 0.0000 (9)
C301 0.0438 (17) 0.0337 (15) 0.0425 (16) 0.0025 (13) −0.0089 (14) −0.0034 (13)
C302 0.0297 (13) 0.0346 (14) 0.0253 (13) −0.0064 (12) −0.0024 (11) −0.0048 (11)
N303 0.0498 (15) 0.0334 (13) 0.0372 (13) −0.0009 (11) −0.0082 (12) −0.0027 (11)

Geometric parameters (Å, º)

Zn1—N102 2.1346 (17) C201—N202 1.299 (3)
Zn1—S105 2.4403 (6) C201—C214 1.481 (3)
Zn1—N115 2.2288 (17) C201—C220 1.483 (3)
Zn1—N202 2.1160 (17) N202—N203 1.385 (2)
Zn1—S205 2.4516 (6) N203—C204 1.306 (3)
Zn1—N215 2.3188 (17) C204—S205 1.719 (2)
C101—N102 1.297 (3) C204—S206 1.760 (2)
C101—C114 1.484 (3) S206—C207 1.829 (3)
C101—C120 1.484 (3) C207—C208 1.512 (4)
N102—N103 1.387 (2) C207—H2071 0.994
N103—C104 1.316 (3) C207—H2072 1.002
C104—S105 1.722 (2) C208—C209 1.397 (3)
C104—S106 1.753 (2) C208—C213 1.387 (3)
S106—C107 1.825 (2) C209—C210 1.382 (4)
C107—C108 1.504 (3) C209—H2091 0.971
C107—H1071 0.984 C210—C211 1.381 (4)
C107—H1072 0.982 C210—H2101 0.939
C108—C109 1.392 (3) C211—C212 1.386 (4)
C108—C113 1.391 (3) C211—H2111 0.957
C109—C110 1.380 (4) C212—C213 1.380 (4)
C109—H1091 0.960 C212—H2121 0.952
C110—C111 1.387 (3) C213—H2131 0.974
C110—H1101 0.940 C214—N215 1.350 (3)
C111—C112 1.382 (3) C214—C219 1.383 (3)
C111—H1111 0.960 N215—C216 1.335 (3)
C112—C113 1.389 (3) C216—C217 1.384 (3)
C112—H1121 0.952 C216—H2161 0.949
C113—H1131 0.967 C217—C218 1.379 (3)
C114—N115 1.352 (3) C217—H2171 0.942
C114—C119 1.390 (3) C218—C219 1.380 (3)
N115—C116 1.337 (3) C218—H2181 0.958
C116—C117 1.383 (3) C219—H2191 0.970
C116—H1161 0.961 C220—C221 1.399 (3)
C117—C118 1.381 (3) C220—C225 1.390 (3)
C117—H1171 0.950 C221—C222 1.388 (3)
C118—C119 1.386 (3) C221—H2211 0.960
C118—H1181 0.952 C222—C223 1.378 (3)
C119—H1191 0.954 C222—H2221 0.961
C120—C121 1.390 (3) C223—C224 1.389 (3)
C120—C125 1.392 (3) C223—H2231 0.959
C121—C122 1.390 (3) C224—C225 1.385 (3)
C121—H1211 0.962 C224—H2241 0.967
C122—C123 1.382 (3) C225—H2251 0.961
C122—H1221 0.964 C301—C302 1.449 (4)
C123—C124 1.385 (3) C301—H3012 0.983
C123—H1231 0.951 C301—H3011 0.958
C124—C125 1.384 (3) C301—H3013 0.947
C124—H1241 0.962 C302—N303 1.131 (3)
C125—H1251 0.951
N102—Zn1—S105 80.19 (5) C120—C125—C124 120.4 (2)
N102—Zn1—N115 74.11 (6) C120—C125—H1251 119.5
S105—Zn1—N115 154.15 (5) C124—C125—H1251 120.0
N102—Zn1—N202 155.73 (7) N202—C201—C214 115.42 (18)
S105—Zn1—N202 109.70 (5) N202—C201—C220 125.14 (19)
N115—Zn1—N202 95.14 (6) C214—C201—C220 119.33 (17)
N102—Zn1—S205 120.54 (5) Zn1—N202—C201 121.37 (14)
S105—Zn1—S205 100.33 (2) Zn1—N202—N203 121.48 (13)
N115—Zn1—S205 90.52 (5) C201—N202—N203 116.47 (17)
N202—Zn1—S205 80.43 (5) N202—N203—C204 113.11 (17)
N102—Zn1—N215 84.94 (6) N203—C204—S205 130.23 (17)
S105—Zn1—N215 90.04 (5) N203—C204—S206 115.02 (16)
N115—Zn1—N215 90.39 (6) S205—C204—S206 114.75 (12)
N202—Zn1—N215 73.24 (6) C204—S205—Zn1 93.26 (7)
S205—Zn1—N215 153.63 (5) C204—S206—C207 102.05 (11)
N102—C101—C114 114.98 (18) S206—C207—C208 113.92 (17)
N102—C101—C120 124.71 (19) S206—C207—H2071 109.2
C114—C101—C120 120.29 (17) C208—C207—H2071 110.3
Zn1—N102—C101 120.13 (14) S206—C207—H2072 105.1
Zn1—N102—N103 120.93 (12) C208—C207—H2072 109.0
C101—N102—N103 117.09 (17) H2071—C207—H2072 109.1
N102—N103—C104 112.46 (17) C207—C208—C209 121.2 (2)
N103—C104—S105 130.01 (17) C207—C208—C213 121.0 (2)
N103—C104—S106 116.92 (16) C209—C208—C213 117.8 (2)
S105—C104—S106 113.05 (12) C208—C209—C210 121.2 (3)
C104—S105—Zn1 93.14 (7) C208—C209—H2091 119.4
C104—S106—C107 104.51 (10) C210—C209—H2091 119.4
S106—C107—C108 114.49 (15) C209—C210—C211 120.1 (3)
S106—C107—H1071 104.6 C209—C210—H2101 119.3
C108—C107—H1071 109.2 C211—C210—H2101 120.7
S106—C107—H1072 107.6 C210—C211—C212 119.3 (3)
C108—C107—H1072 110.7 C210—C211—H2111 120.4
H1071—C107—H1072 110.1 C212—C211—H2111 120.2
C107—C108—C109 121.4 (2) C211—C212—C213 120.4 (3)
C107—C108—C113 120.2 (2) C211—C212—H2121 120.2
C109—C108—C113 118.4 (2) C213—C212—H2121 119.3
C108—C109—C110 121.0 (2) C208—C213—C212 121.1 (2)
C108—C109—H1091 119.2 C208—C213—H2131 118.3
C110—C109—H1091 119.8 C212—C213—H2131 120.6
C109—C110—C111 120.0 (2) C201—C214—N215 115.68 (18)
C109—C110—H1101 121.3 C201—C214—C219 122.15 (19)
C111—C110—H1101 118.7 N215—C214—C219 122.17 (19)
C110—C111—C112 119.8 (2) Zn1—N215—C214 111.17 (13)
C110—C111—H1111 120.4 Zn1—N215—C216 128.93 (14)
C112—C111—H1111 119.9 C214—N215—C216 117.82 (18)
C111—C112—C113 120.0 (2) N215—C216—C217 123.1 (2)
C111—C112—H1121 120.3 N215—C216—H2161 118.6
C113—C112—H1121 119.7 C217—C216—H2161 118.3
C108—C113—C112 120.7 (2) C216—C217—C218 118.6 (2)
C108—C113—H1131 119.3 C216—C217—H2171 119.8
C112—C113—H1131 120.0 C218—C217—H2171 121.5
C101—C114—N115 115.93 (18) C217—C218—C219 118.9 (2)
C101—C114—C119 122.40 (19) C217—C218—H2181 120.8
N115—C114—C119 121.67 (19) C219—C218—H2181 120.3
Zn1—N115—C114 114.19 (13) C214—C219—C218 119.2 (2)
Zn1—N115—C116 126.82 (14) C214—C219—H2191 118.7
C114—N115—C116 118.53 (18) C218—C219—H2191 122.1
N115—C116—C117 122.9 (2) C201—C220—C221 118.48 (18)
N115—C116—H1161 116.8 C201—C220—C225 122.21 (19)
C117—C116—H1161 120.3 C221—C220—C225 119.30 (19)
C116—C117—C118 118.6 (2) C220—C221—C222 120.3 (2)
C116—C117—H1171 119.5 C220—C221—H2211 119.8
C118—C117—H1171 121.8 C222—C221—H2211 119.9
C117—C118—C119 119.2 (2) C221—C222—C223 119.9 (2)
C117—C118—H1181 120.2 C221—C222—H2221 119.6
C119—C118—H1181 120.6 C223—C222—H2221 120.5
C114—C119—C118 119.1 (2) C222—C223—C224 120.1 (2)
C114—C119—H1191 120.1 C222—C223—H2231 120.3
C118—C119—H1191 120.9 C224—C223—H2231 119.6
C101—C120—C121 120.65 (19) C223—C224—C225 120.3 (2)
C101—C120—C125 120.0 (2) C223—C224—H2241 119.4
C121—C120—C125 119.3 (2) C225—C224—H2241 120.3
C120—C121—C122 120.0 (2) C220—C225—C224 120.1 (2)
C120—C121—H1211 119.9 C220—C225—H2251 120.1
C122—C121—H1211 120.0 C224—C225—H2251 119.8
C121—C122—C123 120.3 (2) C302—C301—H3012 109.6
C121—C122—H1221 119.5 C302—C301—H3011 107.4
C123—C122—H1221 120.2 H3012—C301—H3011 111.6
C122—C123—C124 119.9 (2) C302—C301—H3013 108.6
C122—C123—H1231 119.5 H3012—C301—H3013 110.3
C124—C123—H1231 120.6 H3011—C301—H3013 109.2
C123—C124—C125 120.0 (2) C301—C302—N303 178.5 (3)
C123—C124—H1241 121.2 C301—C302—N303 178.5 (3)
C125—C124—H1241 118.8 C301—C302—N303 178.5 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C216—H2161···N103 0.95 2.62 3.285 (3) 127

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2598).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  3. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
  4. Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107.
  5. Hossain, M. E., Alam, M. N., Begum, J., Ali, M. A., Nazimuddin, M., Smith, F. E. & Hynes, R. C. (1996). Inorg. Chim. Acta, 249, 207–213.
  6. Oxford Diffraction (2006). CrysAlis CCD Oxford Diffraction Ltd, Abingdon, England.
  7. Paulus, G., Crouse, K. A., Mohamed Tahir, M. I. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o1370–o1371. [DOI] [PMC free article] [PubMed]
  8. Ravoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., Cowley, A. R. & Ali, M. A. (2004). Polyhedron, 23, 2491–2498.
  9. Ravoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. & Watkins, D. J. (2010). Transition Met. Chem 35, 871–876.
  10. Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, Oxford, England.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812009592/wm2598sup1.cif

e-68-0m390-sup1.cif (28.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009592/wm2598Isup2.hkl

e-68-0m390-Isup2.hkl (543.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES