Abstract
In the title compound, [Cu(C19H16Br4N2O2)], the CuII ion and the substituted C atom of the diamine fragment lie on a crystallographic twofold rotation axis. The geometry around the CuII ion is distorted square-planar, which is defined by the N2O2 donor atoms of the coordinated Schiff base ligand. The dihedral angle between the symmetry-related substituted benzene rings is 25.33 (14)°. The crystal structure is stabilized by an intermolecular π–π interaction [centroid–centroid distance = 3.8891 (18) Å].
Related literature
For standard bond lengths, see: Allen et al. (1987 ▶). For applications of Schiff base ligands in coordination chemistry, see: Granovski et al. (1993 ▶); Blower (1998 ▶). For a related structure, see: Kargar et al. (2008 ▶).
Experimental
Crystal data
[Cu(C19H16Br4N2O2)]
M r = 687.52
Orthorhombic,
a = 16.3594 (8) Å
b = 15.5106 (8) Å
c = 8.4686 (4) Å
V = 2148.86 (18) Å3
Z = 4
Mo Kα radiation
μ = 8.47 mm−1
T = 291 K
0.21 × 0.12 × 0.08 mm
Data collection
Bruker SMART APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005 ▶) T min = 0.269, T max = 0.551
9913 measured reflections
2537 independent reflections
1625 reflections with I > 2σ(I)
R int = 0.052
Refinement
R[F 2 > 2σ(F 2)] = 0.039
wR(F 2) = 0.078
S = 1.00
2537 reflections
128 parameters
H-atom parameters constrained
Δρmax = 0.58 e Å−3
Δρmin = −0.59 e Å−3
Data collection: APEX2 (Bruker, 2005 ▶); cell refinement: SAINT (Bruker, 2005 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 ▶).
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812009397/bv2199sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009397/bv2199Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
HK and MH thank PNU for financial support. MNT thanks GC University of Sargodha, Pakistan, for the research facility.
supplementary crystallographic information
Comment
Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with the ease of preparation and structural variations (Granovski et al., 1993; Blower (1998)).
The asymmetric unit of the title compound, Fig. 1, comprises half of a potentially tetradentate Schiff base ligand. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The Cu1 and C9 atoms lie on crystallographic two-fold rotation axis. The crystal structure is further stabilized by the intermolecular π-π interaction, (Fig. 2), [Cg1···Cg1i = 3.8891 (18)Å; (i) 1 - X, 1 - Y, -Z; Cg1 is the centroid of Cu(1)/O(1)/C(1)/C(6)/C(7)/N(1) ring].
Experimental
The title compound was synthesized by adding 3,5-dibromo-salicylaldehyde-2,2-dimethyl-1,3- propanediamine (2 mmol) to a solution of CuCl2. 4H2O (2.1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant solution was filtered. Green single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.
Refinement
All hydrogen atoms were positioned geometrically with C—H = 0.93-0.97 Å and included in a riding model and treated as riding atoms: C—H = 0.93, 0.96 and 0.97 Å for CH, CH3 and CH2 H-atoms, respectively, with Uiso (H) = k x Ueq(C), where k = 1.5 for CH3 H-atoms, and k = 1.2 for all other H-atoms..
Figures
Fig. 1.
The ORTEP plot of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering.
Fig. 2.
The packing diagram of the title compound viewed down the b-axis showing linking of molecules through the intermolecular π-π intearctions (dashed lines). The hydrogen atoms omitted for clarity.
Crystal data
| [Cu(C19H16Br4N2O2)] | F(000) = 1316 |
| Mr = 687.52 | Dx = 2.125 Mg m−3 |
| Orthorhombic, Pbcn | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2n 2ab | Cell parameters from 1535 reflections |
| a = 16.3594 (8) Å | θ = 2.5–27.5° |
| b = 15.5106 (8) Å | µ = 8.47 mm−1 |
| c = 8.4686 (4) Å | T = 291 K |
| V = 2148.86 (18) Å3 | Block, green |
| Z = 4 | 0.21 × 0.12 × 0.08 mm |
Data collection
| Bruker SMART APEXII CCD area-detector diffractometer | 2537 independent reflections |
| Radiation source: fine-focus sealed tube | 1625 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.052 |
| φ and ω scans | θmax = 28.0°, θmin = 1.8° |
| Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −21→18 |
| Tmin = 0.269, Tmax = 0.551 | k = −20→13 |
| 9913 measured reflections | l = −10→7 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.078 | H-atom parameters constrained |
| S = 1.00 | w = 1/[σ2(Fo2) + (0.0202P)2 + 1.7635P] where P = (Fo2 + 2Fc2)/3 |
| 2537 reflections | (Δ/σ)max = 0.001 |
| 128 parameters | Δρmax = 0.58 e Å−3 |
| 0 restraints | Δρmin = −0.59 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Br1 | 0.33450 (3) | 0.74146 (3) | 0.18143 (5) | 0.05098 (16) | |
| Br2 | 0.10313 (3) | 0.54552 (4) | −0.15415 (7) | 0.0733 (2) | |
| Cu1 | 0.5000 | 0.48415 (4) | 0.2500 | 0.03410 (18) | |
| N1 | 0.4444 (2) | 0.39656 (19) | 0.1258 (3) | 0.0332 (7) | |
| O1 | 0.42323 (17) | 0.57112 (16) | 0.1958 (3) | 0.0395 (7) | |
| C1 | 0.3547 (2) | 0.5618 (2) | 0.1192 (4) | 0.0341 (9) | |
| C2 | 0.3023 (2) | 0.6335 (2) | 0.0965 (4) | 0.0341 (9) | |
| C3 | 0.2301 (2) | 0.6285 (3) | 0.0162 (4) | 0.0406 (10) | |
| H3 | 0.1982 | 0.6776 | 0.0030 | 0.049* | |
| C4 | 0.2042 (2) | 0.5504 (3) | −0.0458 (5) | 0.0417 (10) | |
| C5 | 0.2520 (3) | 0.4788 (3) | −0.0299 (4) | 0.0425 (10) | |
| H5 | 0.2348 | 0.4267 | −0.0730 | 0.051* | |
| C6 | 0.3270 (2) | 0.4831 (2) | 0.0511 (4) | 0.0342 (9) | |
| C7 | 0.3757 (3) | 0.4058 (2) | 0.0534 (4) | 0.0368 (10) | |
| H7 | 0.3560 | 0.3585 | −0.0022 | 0.044* | |
| C8 | 0.4911 (3) | 0.3163 (2) | 0.1017 (4) | 0.0404 (10) | |
| H8A | 0.5453 | 0.3310 | 0.0635 | 0.048* | |
| H8B | 0.4644 | 0.2825 | 0.0204 | 0.048* | |
| C9 | 0.5000 | 0.2606 (3) | 0.2500 | 0.0390 (14) | |
| C10 | 0.5749 (3) | 0.2038 (3) | 0.2270 (5) | 0.0574 (13) | |
| H10A | 0.6231 | 0.2391 | 0.2253 | 0.086* | |
| H10B | 0.5703 | 0.1733 | 0.1288 | 0.086* | |
| H10C | 0.5786 | 0.1633 | 0.3123 | 0.086* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Br1 | 0.0710 (3) | 0.0317 (2) | 0.0503 (3) | 0.0104 (2) | −0.0024 (2) | −0.0063 (2) |
| Br2 | 0.0527 (3) | 0.0645 (4) | 0.1027 (4) | 0.0055 (3) | −0.0303 (3) | 0.0001 (3) |
| Cu1 | 0.0387 (4) | 0.0275 (3) | 0.0361 (4) | 0.000 | −0.0012 (3) | 0.000 |
| N1 | 0.041 (2) | 0.0256 (17) | 0.0334 (17) | 0.0063 (16) | 0.0008 (15) | −0.0012 (14) |
| O1 | 0.0416 (17) | 0.0295 (14) | 0.0475 (16) | 0.0014 (13) | −0.0063 (13) | −0.0027 (13) |
| C1 | 0.042 (3) | 0.031 (2) | 0.030 (2) | 0.002 (2) | 0.0088 (18) | 0.0010 (18) |
| C2 | 0.043 (2) | 0.029 (2) | 0.031 (2) | 0.0058 (19) | 0.0072 (18) | −0.0018 (18) |
| C3 | 0.044 (3) | 0.039 (2) | 0.039 (2) | 0.013 (2) | 0.0078 (19) | 0.002 (2) |
| C4 | 0.035 (2) | 0.046 (3) | 0.045 (2) | 0.006 (2) | −0.0028 (19) | 0.001 (2) |
| C5 | 0.045 (3) | 0.039 (2) | 0.043 (2) | −0.002 (2) | −0.002 (2) | −0.002 (2) |
| C6 | 0.041 (2) | 0.029 (2) | 0.032 (2) | 0.005 (2) | 0.0022 (17) | 0.0001 (18) |
| C7 | 0.049 (3) | 0.029 (2) | 0.032 (2) | 0.001 (2) | 0.0022 (19) | −0.0042 (18) |
| C8 | 0.052 (3) | 0.031 (2) | 0.038 (2) | 0.012 (2) | −0.0001 (19) | −0.0050 (19) |
| C9 | 0.047 (4) | 0.026 (3) | 0.044 (3) | 0.000 | −0.007 (3) | 0.000 |
| C10 | 0.064 (3) | 0.046 (3) | 0.062 (3) | 0.017 (3) | −0.013 (2) | 0.005 (2) |
Geometric parameters (Å, º)
| Br1—C2 | 1.897 (4) | C4—C5 | 1.364 (6) |
| Br2—C4 | 1.893 (4) | C5—C6 | 1.407 (5) |
| Cu1—O1i | 1.899 (3) | C5—H5 | 0.9300 |
| Cu1—O1 | 1.899 (3) | C6—C7 | 1.440 (5) |
| Cu1—N1i | 1.944 (3) | C7—H7 | 0.9300 |
| Cu1—N1 | 1.944 (3) | C8—C9 | 1.531 (5) |
| N1—C7 | 1.288 (5) | C8—H8A | 0.9700 |
| N1—C8 | 1.475 (5) | C8—H8B | 0.9700 |
| O1—C1 | 1.303 (5) | C9—C10i | 1.522 (5) |
| C1—C2 | 1.418 (5) | C9—C10 | 1.522 (5) |
| C1—C6 | 1.425 (5) | C9—C8i | 1.531 (5) |
| C2—C3 | 1.364 (5) | C10—H10A | 0.9600 |
| C3—C4 | 1.387 (6) | C10—H10B | 0.9600 |
| C3—H3 | 0.9300 | C10—H10C | 0.9600 |
| O1i—Cu1—O1 | 89.50 (16) | C5—C6—C1 | 121.0 (4) |
| O1i—Cu1—N1i | 93.23 (12) | C5—C6—C7 | 116.8 (4) |
| O1—Cu1—N1i | 159.45 (11) | C1—C6—C7 | 122.1 (4) |
| O1i—Cu1—N1 | 159.45 (11) | N1—C7—C6 | 125.6 (4) |
| O1—Cu1—N1 | 93.23 (12) | N1—C7—H7 | 117.2 |
| N1i—Cu1—N1 | 91.32 (18) | C6—C7—H7 | 117.2 |
| C7—N1—C8 | 118.7 (3) | N1—C8—C9 | 114.3 (3) |
| C7—N1—Cu1 | 126.0 (3) | N1—C8—H8A | 108.7 |
| C8—N1—Cu1 | 115.0 (3) | C9—C8—H8A | 108.7 |
| C1—O1—Cu1 | 127.6 (2) | N1—C8—H8B | 108.7 |
| O1—C1—C2 | 120.1 (4) | C9—C8—H8B | 108.7 |
| O1—C1—C6 | 124.8 (4) | H8A—C8—H8B | 107.6 |
| C2—C1—C6 | 115.1 (4) | C10i—C9—C10 | 109.2 (5) |
| C3—C2—C1 | 123.2 (4) | C10i—C9—C8i | 107.3 (2) |
| C3—C2—Br1 | 118.7 (3) | C10—C9—C8i | 110.8 (2) |
| C1—C2—Br1 | 118.2 (3) | C10i—C9—C8 | 110.8 (2) |
| C2—C3—C4 | 120.2 (4) | C10—C9—C8 | 107.3 (2) |
| C2—C3—H3 | 119.9 | C8i—C9—C8 | 111.3 (4) |
| C4—C3—H3 | 119.9 | C9—C10—H10A | 109.5 |
| C5—C4—C3 | 119.9 (4) | C9—C10—H10B | 109.5 |
| C5—C4—Br2 | 121.1 (3) | H10A—C10—H10B | 109.5 |
| C3—C4—Br2 | 119.0 (3) | C9—C10—H10C | 109.5 |
| C4—C5—C6 | 120.6 (4) | H10A—C10—H10C | 109.5 |
| C4—C5—H5 | 119.7 | H10B—C10—H10C | 109.5 |
| C6—C5—H5 | 119.7 | ||
| O1i—Cu1—N1—C7 | −102.7 (4) | C2—C3—C4—Br2 | 179.2 (3) |
| O1—Cu1—N1—C7 | −5.5 (3) | C3—C4—C5—C6 | 1.0 (6) |
| N1i—Cu1—N1—C7 | 154.5 (4) | Br2—C4—C5—C6 | −179.9 (3) |
| O1i—Cu1—N1—C8 | 70.7 (4) | C4—C5—C6—C1 | 0.3 (6) |
| O1—Cu1—N1—C8 | 167.9 (2) | C4—C5—C6—C7 | −176.2 (4) |
| N1i—Cu1—N1—C8 | −32.2 (2) | O1—C1—C6—C5 | 180.0 (3) |
| O1i—Cu1—O1—C1 | 167.4 (3) | C2—C1—C6—C5 | −0.9 (5) |
| N1i—Cu1—O1—C1 | −94.7 (4) | O1—C1—C6—C7 | −3.7 (6) |
| N1—Cu1—O1—C1 | 7.8 (3) | C2—C1—C6—C7 | 175.4 (3) |
| Cu1—O1—C1—C2 | 176.5 (2) | C8—N1—C7—C6 | −173.3 (3) |
| Cu1—O1—C1—C6 | −4.5 (5) | Cu1—N1—C7—C6 | −0.1 (6) |
| O1—C1—C2—C3 | 179.4 (3) | C5—C6—C7—N1 | −177.5 (4) |
| C6—C1—C2—C3 | 0.2 (5) | C1—C6—C7—N1 | 6.1 (6) |
| O1—C1—C2—Br1 | −0.4 (5) | C7—N1—C8—C9 | −115.0 (4) |
| C6—C1—C2—Br1 | −179.5 (3) | Cu1—N1—C8—C9 | 71.1 (4) |
| C1—C2—C3—C4 | 1.0 (6) | N1—C8—C9—C10i | 83.8 (4) |
| Br1—C2—C3—C4 | −179.2 (3) | N1—C8—C9—C10 | −157.0 (4) |
| C2—C3—C4—C5 | −1.7 (6) | N1—C8—C9—C8i | −35.6 (2) |
Symmetry code: (i) −x+1, y, −z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2199).
References
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Blower, P. J. (1998). Transition Met. Chem., 23, 109–112.
- Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.
- Kargar, H., Fun, H.-K. & Kia, R. (2008). Acta Cryst. E64, m1541–m1542. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812009397/bv2199sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009397/bv2199Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


