Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 10;68(Pt 4):m392. doi: 10.1107/S1600536812009397

{4,4′,6,6′-Tetra­bromo-2,2′-[(2,2-dimethyl­propane-1,3-di­yl)bis­(nitrilo­methanylyl­idene)]diphenolato}copper(II)

Hadi Kargar a,*, Reza Kia b, Mahbubeh Haghshenas a, Muhammad Nawaz Tahir c,*
PMCID: PMC3343805  PMID: 22589779

Abstract

In the title compound, [Cu(C19H16Br4N2O2)], the CuII ion and the substituted C atom of the diamine fragment lie on a crystallographic twofold rotation axis. The geometry around the CuII ion is distorted square-planar, which is defined by the N2O2 donor atoms of the coordinated Schiff base ligand. The dihedral angle between the symmetry-related substituted benzene rings is 25.33 (14)°. The crystal structure is stabilized by an inter­molecular π–π inter­action [centroid–centroid distance = 3.8891 (18) Å].

Related literature  

For standard bond lengths, see: Allen et al. (1987). For applications of Schiff base ligands in coordination chemistry, see: Granovski et al. (1993); Blower (1998). For a related structure, see: Kargar et al. (2008).graphic file with name e-68-0m392-scheme1.jpg

Experimental  

Crystal data  

  • [Cu(C19H16Br4N2O2)]

  • M r = 687.52

  • Orthorhombic, Inline graphic

  • a = 16.3594 (8) Å

  • b = 15.5106 (8) Å

  • c = 8.4686 (4) Å

  • V = 2148.86 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.47 mm−1

  • T = 291 K

  • 0.21 × 0.12 × 0.08 mm

Data collection  

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.269, T max = 0.551

  • 9913 measured reflections

  • 2537 independent reflections

  • 1625 reflections with I > 2σ(I)

  • R int = 0.052

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.078

  • S = 1.00

  • 2537 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.59 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812009397/bv2199sup1.cif

e-68-0m392-sup1.cif (16.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009397/bv2199Isup2.hkl

e-68-0m392-Isup2.hkl (124.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HK and MH thank PNU for financial support. MNT thanks GC University of Sargodha, Pakistan, for the research facility.

supplementary crystallographic information

Comment

Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with the ease of preparation and structural variations (Granovski et al., 1993; Blower (1998)).

The asymmetric unit of the title compound, Fig. 1, comprises half of a potentially tetradentate Schiff base ligand. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The Cu1 and C9 atoms lie on crystallographic two-fold rotation axis. The crystal structure is further stabilized by the intermolecular π-π interaction, (Fig. 2), [Cg1···Cg1i = 3.8891 (18)Å; (i) 1 - X, 1 - Y, -Z; Cg1 is the centroid of Cu(1)/O(1)/C(1)/C(6)/C(7)/N(1) ring].

Experimental

The title compound was synthesized by adding 3,5-dibromo-salicylaldehyde-2,2-dimethyl-1,3- propanediamine (2 mmol) to a solution of CuCl2. 4H2O (2.1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant solution was filtered. Green single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement

All hydrogen atoms were positioned geometrically with C—H = 0.93-0.97 Å and included in a riding model and treated as riding atoms: C—H = 0.93, 0.96 and 0.97 Å for CH, CH3 and CH2 H-atoms, respectively, with Uiso (H) = k x Ueq(C), where k = 1.5 for CH3 H-atoms, and k = 1.2 for all other H-atoms..

Figures

Fig. 1.

Fig. 1.

The ORTEP plot of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering.

Fig. 2.

Fig. 2.

The packing diagram of the title compound viewed down the b-axis showing linking of molecules through the intermolecular π-π intearctions (dashed lines). The hydrogen atoms omitted for clarity.

Crystal data

[Cu(C19H16Br4N2O2)] F(000) = 1316
Mr = 687.52 Dx = 2.125 Mg m3
Orthorhombic, Pbcn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2ab Cell parameters from 1535 reflections
a = 16.3594 (8) Å θ = 2.5–27.5°
b = 15.5106 (8) Å µ = 8.47 mm1
c = 8.4686 (4) Å T = 291 K
V = 2148.86 (18) Å3 Block, green
Z = 4 0.21 × 0.12 × 0.08 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 2537 independent reflections
Radiation source: fine-focus sealed tube 1625 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.052
φ and ω scans θmax = 28.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −21→18
Tmin = 0.269, Tmax = 0.551 k = −20→13
9913 measured reflections l = −10→7

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0202P)2 + 1.7635P] where P = (Fo2 + 2Fc2)/3
2537 reflections (Δ/σ)max = 0.001
128 parameters Δρmax = 0.58 e Å3
0 restraints Δρmin = −0.59 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.33450 (3) 0.74146 (3) 0.18143 (5) 0.05098 (16)
Br2 0.10313 (3) 0.54552 (4) −0.15415 (7) 0.0733 (2)
Cu1 0.5000 0.48415 (4) 0.2500 0.03410 (18)
N1 0.4444 (2) 0.39656 (19) 0.1258 (3) 0.0332 (7)
O1 0.42323 (17) 0.57112 (16) 0.1958 (3) 0.0395 (7)
C1 0.3547 (2) 0.5618 (2) 0.1192 (4) 0.0341 (9)
C2 0.3023 (2) 0.6335 (2) 0.0965 (4) 0.0341 (9)
C3 0.2301 (2) 0.6285 (3) 0.0162 (4) 0.0406 (10)
H3 0.1982 0.6776 0.0030 0.049*
C4 0.2042 (2) 0.5504 (3) −0.0458 (5) 0.0417 (10)
C5 0.2520 (3) 0.4788 (3) −0.0299 (4) 0.0425 (10)
H5 0.2348 0.4267 −0.0730 0.051*
C6 0.3270 (2) 0.4831 (2) 0.0511 (4) 0.0342 (9)
C7 0.3757 (3) 0.4058 (2) 0.0534 (4) 0.0368 (10)
H7 0.3560 0.3585 −0.0022 0.044*
C8 0.4911 (3) 0.3163 (2) 0.1017 (4) 0.0404 (10)
H8A 0.5453 0.3310 0.0635 0.048*
H8B 0.4644 0.2825 0.0204 0.048*
C9 0.5000 0.2606 (3) 0.2500 0.0390 (14)
C10 0.5749 (3) 0.2038 (3) 0.2270 (5) 0.0574 (13)
H10A 0.6231 0.2391 0.2253 0.086*
H10B 0.5703 0.1733 0.1288 0.086*
H10C 0.5786 0.1633 0.3123 0.086*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0710 (3) 0.0317 (2) 0.0503 (3) 0.0104 (2) −0.0024 (2) −0.0063 (2)
Br2 0.0527 (3) 0.0645 (4) 0.1027 (4) 0.0055 (3) −0.0303 (3) 0.0001 (3)
Cu1 0.0387 (4) 0.0275 (3) 0.0361 (4) 0.000 −0.0012 (3) 0.000
N1 0.041 (2) 0.0256 (17) 0.0334 (17) 0.0063 (16) 0.0008 (15) −0.0012 (14)
O1 0.0416 (17) 0.0295 (14) 0.0475 (16) 0.0014 (13) −0.0063 (13) −0.0027 (13)
C1 0.042 (3) 0.031 (2) 0.030 (2) 0.002 (2) 0.0088 (18) 0.0010 (18)
C2 0.043 (2) 0.029 (2) 0.031 (2) 0.0058 (19) 0.0072 (18) −0.0018 (18)
C3 0.044 (3) 0.039 (2) 0.039 (2) 0.013 (2) 0.0078 (19) 0.002 (2)
C4 0.035 (2) 0.046 (3) 0.045 (2) 0.006 (2) −0.0028 (19) 0.001 (2)
C5 0.045 (3) 0.039 (2) 0.043 (2) −0.002 (2) −0.002 (2) −0.002 (2)
C6 0.041 (2) 0.029 (2) 0.032 (2) 0.005 (2) 0.0022 (17) 0.0001 (18)
C7 0.049 (3) 0.029 (2) 0.032 (2) 0.001 (2) 0.0022 (19) −0.0042 (18)
C8 0.052 (3) 0.031 (2) 0.038 (2) 0.012 (2) −0.0001 (19) −0.0050 (19)
C9 0.047 (4) 0.026 (3) 0.044 (3) 0.000 −0.007 (3) 0.000
C10 0.064 (3) 0.046 (3) 0.062 (3) 0.017 (3) −0.013 (2) 0.005 (2)

Geometric parameters (Å, º)

Br1—C2 1.897 (4) C4—C5 1.364 (6)
Br2—C4 1.893 (4) C5—C6 1.407 (5)
Cu1—O1i 1.899 (3) C5—H5 0.9300
Cu1—O1 1.899 (3) C6—C7 1.440 (5)
Cu1—N1i 1.944 (3) C7—H7 0.9300
Cu1—N1 1.944 (3) C8—C9 1.531 (5)
N1—C7 1.288 (5) C8—H8A 0.9700
N1—C8 1.475 (5) C8—H8B 0.9700
O1—C1 1.303 (5) C9—C10i 1.522 (5)
C1—C2 1.418 (5) C9—C10 1.522 (5)
C1—C6 1.425 (5) C9—C8i 1.531 (5)
C2—C3 1.364 (5) C10—H10A 0.9600
C3—C4 1.387 (6) C10—H10B 0.9600
C3—H3 0.9300 C10—H10C 0.9600
O1i—Cu1—O1 89.50 (16) C5—C6—C1 121.0 (4)
O1i—Cu1—N1i 93.23 (12) C5—C6—C7 116.8 (4)
O1—Cu1—N1i 159.45 (11) C1—C6—C7 122.1 (4)
O1i—Cu1—N1 159.45 (11) N1—C7—C6 125.6 (4)
O1—Cu1—N1 93.23 (12) N1—C7—H7 117.2
N1i—Cu1—N1 91.32 (18) C6—C7—H7 117.2
C7—N1—C8 118.7 (3) N1—C8—C9 114.3 (3)
C7—N1—Cu1 126.0 (3) N1—C8—H8A 108.7
C8—N1—Cu1 115.0 (3) C9—C8—H8A 108.7
C1—O1—Cu1 127.6 (2) N1—C8—H8B 108.7
O1—C1—C2 120.1 (4) C9—C8—H8B 108.7
O1—C1—C6 124.8 (4) H8A—C8—H8B 107.6
C2—C1—C6 115.1 (4) C10i—C9—C10 109.2 (5)
C3—C2—C1 123.2 (4) C10i—C9—C8i 107.3 (2)
C3—C2—Br1 118.7 (3) C10—C9—C8i 110.8 (2)
C1—C2—Br1 118.2 (3) C10i—C9—C8 110.8 (2)
C2—C3—C4 120.2 (4) C10—C9—C8 107.3 (2)
C2—C3—H3 119.9 C8i—C9—C8 111.3 (4)
C4—C3—H3 119.9 C9—C10—H10A 109.5
C5—C4—C3 119.9 (4) C9—C10—H10B 109.5
C5—C4—Br2 121.1 (3) H10A—C10—H10B 109.5
C3—C4—Br2 119.0 (3) C9—C10—H10C 109.5
C4—C5—C6 120.6 (4) H10A—C10—H10C 109.5
C4—C5—H5 119.7 H10B—C10—H10C 109.5
C6—C5—H5 119.7
O1i—Cu1—N1—C7 −102.7 (4) C2—C3—C4—Br2 179.2 (3)
O1—Cu1—N1—C7 −5.5 (3) C3—C4—C5—C6 1.0 (6)
N1i—Cu1—N1—C7 154.5 (4) Br2—C4—C5—C6 −179.9 (3)
O1i—Cu1—N1—C8 70.7 (4) C4—C5—C6—C1 0.3 (6)
O1—Cu1—N1—C8 167.9 (2) C4—C5—C6—C7 −176.2 (4)
N1i—Cu1—N1—C8 −32.2 (2) O1—C1—C6—C5 180.0 (3)
O1i—Cu1—O1—C1 167.4 (3) C2—C1—C6—C5 −0.9 (5)
N1i—Cu1—O1—C1 −94.7 (4) O1—C1—C6—C7 −3.7 (6)
N1—Cu1—O1—C1 7.8 (3) C2—C1—C6—C7 175.4 (3)
Cu1—O1—C1—C2 176.5 (2) C8—N1—C7—C6 −173.3 (3)
Cu1—O1—C1—C6 −4.5 (5) Cu1—N1—C7—C6 −0.1 (6)
O1—C1—C2—C3 179.4 (3) C5—C6—C7—N1 −177.5 (4)
C6—C1—C2—C3 0.2 (5) C1—C6—C7—N1 6.1 (6)
O1—C1—C2—Br1 −0.4 (5) C7—N1—C8—C9 −115.0 (4)
C6—C1—C2—Br1 −179.5 (3) Cu1—N1—C8—C9 71.1 (4)
C1—C2—C3—C4 1.0 (6) N1—C8—C9—C10i 83.8 (4)
Br1—C2—C3—C4 −179.2 (3) N1—C8—C9—C10 −157.0 (4)
C2—C3—C4—C5 −1.7 (6) N1—C8—C9—C8i −35.6 (2)

Symmetry code: (i) −x+1, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2199).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Blower, P. J. (1998). Transition Met. Chem., 23, 109–112.
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.
  5. Kargar, H., Fun, H.-K. & Kia, R. (2008). Acta Cryst. E64, m1541–m1542. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812009397/bv2199sup1.cif

e-68-0m392-sup1.cif (16.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812009397/bv2199Isup2.hkl

e-68-0m392-Isup2.hkl (124.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES