Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 10;68(Pt 4):m399. doi: 10.1107/S1600536812007970

(Acetato-κO)(aqua-κO)(2-{bis­[(3,5-dimethyl-1H-pyrazol-1-yl-κN 2)methyl]amino-κN}ethanol-κO)nickel(II) perchlorate monohydrate

Jia Zhou a, Mouhai Shu a,*
PMCID: PMC3343810  PMID: 22589784

Abstract

In the structure of the title complex, [Ni(CH3CO2)(C14H23N5O)(H2O)]ClO4·H2O, the NiII centre has a distorted octa­hedral environment defined by one O and three N atoms derived from the tetra­dentate ligand, and two O atoms, one from a water mol­ecule and the other from an acetate anion. The mol­ecules are connected into a three-dimensional architecture by O—H⋯O hydrogen bonds. The perchlorate anion is disordered over two positions; the major component has a site-occupancy factor of 0.525 (19).

Related literature  

For the preparation of the tripodal ligand, see: Malachowski et al. (1992). For background to hydrolytic enzymes, see: Koike et al. (1995); Lipscomb & Sträter (1996). For related structures, see: Shin et al. (2011); Sundaravel et al. (2011); Xia et al. (2001).graphic file with name e-68-0m399-scheme1.jpg

Experimental  

Crystal data  

  • [Ni(C2H3O2)(C14H23N5O)(H2O)]ClO4·H2O

  • M r = 530.61

  • Monoclinic, Inline graphic

  • a = 9.6055 (11) Å

  • b = 9.9889 (11) Å

  • c = 24.258 (3) Å

  • β = 90.284 (2)°

  • V = 2327.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.00 mm−1

  • T = 293 K

  • 0.43 × 0.37 × 0.21 mm

Data collection  

  • Bruker APEX CCD diffractometer

  • Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 2003) T min = 0.732, T max = 1.000

  • 13249 measured reflections

  • 5057 independent reflections

  • 2284 reflections with I > 2σ(I)

  • R int = 0.082

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.142

  • S = 0.82

  • 5057 reflections

  • 310 parameters

  • 26 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812007970/tk5060sup1.cif

e-68-0m399-sup1.cif (26.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812007970/tk5060Isup2.hkl

e-68-0m399-Isup2.hkl (247.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812007970/tk5060Isup3.mol

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H26⋯O3i 0.86 (1) 1.80 (1) 2.631 (10) 163 (1)
O4—H27⋯O5ii 0.86 (1) 2.03 (1) 2.882 (10) 171 (1)
O4—H28⋯O3 0.86 (1) 1.87 (1) 2.684 (10) 158 (5)
O5—H29⋯O11′ 0.86 (1) 1.84 (1) 2.695 (10) 174 (1)
O5—H29⋯O11 0.86 (1) 2.09 (1) 2.940 (10) 168 (1)
O5—H30⋯O12′iii 0.86 (1) 2.59 (1) 3.162 (10) 125 (1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank Professor D.-J. Xu, Zhejiang University, China, for his helpful suggestions.

supplementary crystallographic information

Comment

ZnII-bound alkoxides, resulting from the deprotonation of the ZnII-coordinated alcoholic hydroxides in ZnII-containing enzymes (Lipscomb & Sträter, 1996), usually act as nucleophiles to attack the substrates (e.g. phosphates, CO2, and carboxy esters). Polyamines with a pendant ethoxyl group can mimic the chemical surroundings of ZnII in the active site of the ZnII-containing enzymes (Koike et al., 1995). This encouraged us to investigate the coordination chemistry of transition metal ions with a new ligand containing a N3O donor set. In this work, N,N-bis(3,5-dimethyl-pyrazol-1-yl-methylene)aminoethanol (Malachowski et al., 1992) was reacted with nickel acetate in the presence of sodium perchlorate to yield the title complex as blue crystals in 68% yield. Related structures have been reported previously (Shin et al., 2011; Sundaravel et al., 2011; Xia et al., 2001).

In the structure, the NiII cation has a six-coordinated geometry consisting of three N atoms and an O atom from the organic ligand, and two O atoms from a water molecule and an acetate (Fig. 1). The Ni—Npyrazolyl bond distances are 2.071 (4) and 2.044 (4) Å, which are shorter than the Ni—Namino bond length (2.124 (3) Å). The Ni—Oacetate bond distance is 1.999 (3) Å, which is about 0.1 Å shorter than those of Ni—Oalcohol (2.097 (3) Å) and Ni—Owater (2.126 (4) Å). The cis bond angles are deviate from 90° by about 10°, and the trans bond angles deviate from 180° by about 20°. Therefore, the coordination geometry of the NiII centre is a distorted octahedron. In the crystal, there are O—H···O hydrogen bonds. The unit contents are illustrated in Fig. 2.

Experimental

A solution of Ni(OAc)2.4H2O(0.2 mmol) in 2 ml H2O was added dropwise to a solution of N,N-bis(3,5-dimethyl-pyrazol-1-yl-methylene-)aminoethanol (0.2 mmol) in 10 ml of methanol. The blue solution was stirred for 30 min and a drop of saturated NaClO4 solution was added to the mixture. The clear solution in a test tube was left undisturbed. Blue crystals were obtained after a week.

Refinement

H atoms bonded to O atoms were located in a difference map and refined with distance restraints of O—H = 0.86±0.01 Å. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 (aromatic), C—H = 0.97 (CH2) and C—H = 0.96 (CH3) Å. All H atoms were refined with Uiso(H) = 1.2 (1.5 for methyl groups) Ueq(C). The perchlorate is disordered and refined over two positions. The site occupancy factors of the two positions were refined to a ratio 0.525 (19) and 0.475 (19), and with distances restraints of Cl—O = 1.44 (1) Å.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title complex with atom labels and 30% probability displacement ellipsoids for non-H atoms. H atoms bound to the C atoms were omitted for clarity.

Fig. 2.

Fig. 2.

The packing of the complex, viewed approximately down the a axis, showing the O—H···O hydrogen bonds (dashed lines).

Crystal data

[Ni(C2H3O2)(C14H23N5O)(H2O)]ClO4·H2O F(000) = 1112
Mr = 530.61 Dx = 1.514 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1110 reflections
a = 9.6055 (11) Å θ = 5.3°
b = 9.9889 (11) Å µ = 1.00 mm1
c = 24.258 (3) Å T = 293 K
β = 90.284 (2)° Block, blue
V = 2327.5 (5) Å3 0.43 × 0.37 × 0.21 mm
Z = 4

Data collection

Bruker APEX CCD diffractometer 5057 independent reflections
Radiation source: fine-focus sealed tube 2284 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.082
φ and ω scans θmax = 27.0°, θmin = 1.7°
Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 2003) h = −12→12
Tmin = 0.732, Tmax = 1.000 k = −9→12
13249 measured reflections l = −30→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142 H atoms treated by a mixture of independent and constrained refinement
S = 0.82 w = 1/[σ2(Fo2) + (0.0493P)2] where P = (Fo2 + 2Fc2)/3
5057 reflections (Δ/σ)max = 0.001
310 parameters Δρmax = 0.66 e Å3
26 restraints Δρmin = −0.50 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ni −0.44003 (7) 1.26474 (6) 0.84018 (3) 0.0315 (2)
Cl −0.00311 (17) 0.76885 (16) 0.95183 (7) 0.0575 (4) 0.525 (19)
Cl' −0.00311 (17) 0.76885 (16) 0.95183 (7) 0.0575 (4) 0.475 (19)
N1 −0.2854 (4) 1.2368 (4) 0.90201 (15) 0.0328 (10)
N2 −0.2798 (4) 1.1888 (4) 0.79269 (17) 0.0342 (10)
N3 −0.1741 (4) 1.1411 (4) 0.82475 (17) 0.0355 (10)
N4 −0.5531 (5) 1.3175 (4) 0.90797 (17) 0.0374 (11)
N5 −0.4845 (5) 1.2870 (4) 0.95579 (18) 0.0436 (12)
O1 −0.3473 (4) 1.4547 (3) 0.83710 (15) 0.0383 (9)
H26 −0.357 (6) 1.491 (5) 0.8051 (10) 0.07 (2)*
O2 −0.5772 (3) 1.3140 (3) 0.78136 (14) 0.0383 (9)
O3 −0.6299 (4) 1.1117 (3) 0.74957 (14) 0.0437 (9)
O4 −0.5166 (4) 1.0662 (4) 0.84915 (19) 0.0434 (9)
H27 −0.572 (4) 1.067 (5) 0.8766 (14) 0.050 (19)*
H28 −0.565 (5) 1.062 (6) 0.8195 (14) 0.08 (2)*
O5 0.2962 (5) 1.0394 (6) 0.9409 (2) 0.0831 (15)
H29 0.240 (5) 0.972 (4) 0.938 (2) 0.09 (3)*
H30 0.276 (6) 1.100 (4) 0.965 (2) 0.08 (3)*
O11 0.1400 (8) 0.7866 (11) 0.9351 (5) 0.088 (3) 0.525 (19)
O11' 0.1098 (13) 0.8400 (14) 0.9279 (5) 0.106 (3) 0.475 (19)
O12 −0.0120 (12) 0.7935 (11) 1.0102 (3) 0.088 (3) 0.525 (19)
O12' −0.0278 (16) 0.8426 (13) 1.0018 (4) 0.106 (3) 0.475 (19)
O13 −0.1096 (9) 0.8469 (13) 0.9288 (5) 0.088 (3) 0.525 (19)
O13' −0.1122 (10) 0.7788 (18) 0.9127 (5) 0.106 (3) 0.475 (19)
O14 −0.0262 (12) 0.6290 (7) 0.9444 (5) 0.088 (3) 0.525 (19)
O14' 0.0112 (16) 0.6299 (8) 0.9658 (6) 0.106 (3) 0.475 (19)
C1 −0.1981 (6) 1.1237 (5) 0.8832 (2) 0.0438 (14)
H1A −0.1102 1.1230 0.9030 0.053*
H1B −0.2452 1.0394 0.8899 0.053*
C2 −0.0605 (6) 1.1114 (5) 0.7946 (2) 0.0459 (15)
C3 −0.0943 (6) 1.1418 (5) 0.7411 (2) 0.0482 (16)
H3A −0.0374 1.1314 0.7105 0.058*
C4 −0.2312 (6) 1.1917 (5) 0.7410 (2) 0.0409 (14)
C5 −0.3171 (6) 1.2402 (5) 0.6948 (2) 0.0535 (16)
H5A −0.4067 1.2672 0.7083 0.080*
H5B −0.3287 1.1698 0.6683 0.080*
H5C −0.2721 1.3152 0.6778 0.080*
C6 0.0674 (6) 1.0516 (6) 0.8194 (3) 0.072 (2)
H6A 0.0559 1.0437 0.8585 0.107*
H6B 0.1458 1.1081 0.8118 0.107*
H6C 0.0829 0.9646 0.8038 0.107*
C7 −0.3614 (6) 1.2020 (5) 0.9529 (2) 0.0475 (15)
H7A −0.3885 1.1084 0.9522 0.057*
H7B −0.3024 1.2166 0.9850 0.057*
C8 −0.5593 (7) 1.3211 (6) 1.0010 (2) 0.0497 (16)
C9 −0.6788 (7) 1.3771 (5) 0.9807 (2) 0.0536 (17)
H9A −0.7517 1.4113 1.0014 0.064*
C10 −0.6722 (6) 1.3739 (5) 0.9235 (2) 0.0442 (15)
C11 −0.7764 (6) 1.4210 (5) 0.8818 (3) 0.0629 (18)
H11B −0.7416 1.4047 0.8454 0.094*
H11C −0.7923 1.5152 0.8866 0.094*
H11D −0.8623 1.3734 0.8867 0.094*
C12 −0.5118 (7) 1.2947 (6) 1.0577 (2) 0.078 (2)
H12A −0.4213 1.2540 1.0569 0.117*
H12B −0.5761 1.2354 1.0755 0.117*
H12C −0.5070 1.3774 1.0778 0.117*
C13 −0.2072 (6) 1.3644 (5) 0.9084 (2) 0.0425 (14)
H13A −0.1120 1.3446 0.9191 0.051*
H13B −0.2490 1.4167 0.9377 0.051*
C14 −0.2067 (6) 1.4462 (5) 0.8560 (2) 0.0424 (14)
H14A −0.1700 1.5350 0.8632 0.051*
H14B −0.1491 1.4035 0.8284 0.051*
C15 −0.6364 (5) 1.2371 (5) 0.7480 (2) 0.0351 (12)
C16 −0.7201 (6) 1.3043 (5) 0.7039 (2) 0.0552 (16)
H16A −0.7145 1.3996 0.7084 0.083*
H16B −0.8155 1.2763 0.7064 0.083*
H16C −0.6840 1.2800 0.6684 0.083*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni 0.0311 (4) 0.0329 (4) 0.0304 (4) 0.0005 (3) −0.0002 (3) −0.0012 (3)
Cl 0.0533 (10) 0.0626 (11) 0.0566 (10) −0.0156 (8) −0.0060 (8) 0.0043 (9)
Cl' 0.0533 (10) 0.0626 (11) 0.0566 (10) −0.0156 (8) −0.0060 (8) 0.0043 (9)
N1 0.037 (3) 0.032 (2) 0.029 (2) −0.003 (2) −0.0011 (19) 0.0008 (19)
N2 0.031 (3) 0.039 (2) 0.032 (3) 0.0024 (19) 0.000 (2) −0.0026 (19)
N3 0.029 (3) 0.041 (3) 0.036 (3) 0.005 (2) −0.002 (2) 0.001 (2)
N4 0.039 (3) 0.039 (2) 0.034 (3) −0.001 (2) 0.003 (2) 0.000 (2)
N5 0.051 (3) 0.044 (3) 0.036 (3) −0.008 (2) 0.012 (2) −0.003 (2)
O1 0.037 (2) 0.036 (2) 0.042 (2) −0.0039 (16) −0.0077 (19) 0.0048 (18)
O2 0.039 (2) 0.036 (2) 0.040 (2) 0.0020 (16) −0.0108 (18) −0.0072 (17)
O3 0.052 (3) 0.034 (2) 0.045 (2) −0.0001 (17) −0.0064 (19) −0.0017 (17)
O4 0.042 (3) 0.044 (2) 0.045 (3) −0.0032 (18) −0.003 (2) 0.001 (2)
O5 0.084 (4) 0.073 (4) 0.092 (4) −0.034 (3) 0.006 (3) 0.006 (3)
O11 0.086 (5) 0.067 (4) 0.109 (5) 0.005 (3) −0.015 (3) 0.000 (3)
O11' 0.118 (7) 0.093 (6) 0.106 (6) −0.028 (4) −0.013 (4) 0.003 (4)
O12 0.086 (5) 0.067 (4) 0.109 (5) 0.005 (3) −0.015 (3) 0.000 (3)
O12' 0.118 (7) 0.093 (6) 0.106 (6) −0.028 (4) −0.013 (4) 0.003 (4)
O13 0.086 (5) 0.067 (4) 0.109 (5) 0.005 (3) −0.015 (3) 0.000 (3)
O13' 0.118 (7) 0.093 (6) 0.106 (6) −0.028 (4) −0.013 (4) 0.003 (4)
O14 0.086 (5) 0.067 (4) 0.109 (5) 0.005 (3) −0.015 (3) 0.000 (3)
O14' 0.118 (7) 0.093 (6) 0.106 (6) −0.028 (4) −0.013 (4) 0.003 (4)
C1 0.047 (4) 0.042 (3) 0.043 (4) 0.008 (3) −0.008 (3) 0.001 (3)
C2 0.036 (4) 0.046 (3) 0.056 (4) 0.000 (3) 0.009 (3) −0.004 (3)
C3 0.036 (4) 0.052 (4) 0.056 (4) 0.001 (3) 0.019 (3) −0.006 (3)
C4 0.046 (4) 0.037 (3) 0.040 (4) −0.004 (3) 0.008 (3) −0.005 (3)
C5 0.054 (4) 0.078 (4) 0.029 (3) 0.002 (3) 0.007 (3) 0.003 (3)
C6 0.039 (4) 0.081 (5) 0.095 (6) 0.014 (3) 0.005 (4) 0.011 (4)
C7 0.059 (4) 0.052 (4) 0.031 (3) −0.001 (3) −0.004 (3) 0.006 (3)
C8 0.059 (5) 0.053 (4) 0.037 (4) −0.017 (3) 0.018 (3) −0.009 (3)
C9 0.051 (4) 0.054 (4) 0.055 (4) −0.012 (3) 0.027 (4) −0.020 (3)
C10 0.044 (4) 0.030 (3) 0.058 (4) −0.011 (3) 0.018 (3) −0.011 (3)
C11 0.039 (4) 0.057 (4) 0.092 (5) 0.008 (3) 0.009 (4) −0.014 (4)
C12 0.103 (6) 0.096 (5) 0.036 (4) −0.014 (4) 0.020 (4) −0.008 (3)
C13 0.046 (4) 0.042 (3) 0.040 (3) −0.007 (3) −0.004 (3) −0.006 (3)
C14 0.044 (4) 0.041 (3) 0.042 (4) −0.007 (3) −0.010 (3) 0.003 (3)
C15 0.028 (3) 0.045 (3) 0.033 (3) 0.001 (3) 0.002 (2) 0.002 (3)
C16 0.051 (4) 0.055 (4) 0.059 (4) 0.000 (3) −0.021 (3) 0.002 (3)

Geometric parameters (Å, º)

Ni—O2 1.999 (3) C2—C6 1.490 (7)
Ni—N4 2.044 (4) C3—C4 1.406 (7)
Ni—N2 2.071 (4) C3—H3A 0.9300
Ni—O1 2.097 (3) C4—C5 1.471 (7)
Ni—N1 2.124 (4) C5—H5A 0.9600
Ni—O4 2.126 (4) C5—H5B 0.9600
Cl—O13 1.401 (7) C5—H5C 0.9600
Cl—O14 1.426 (7) C6—H6A 0.9600
Cl—O12 1.439 (7) C6—H6B 0.9600
Cl—O11 1.446 (7) C6—H6C 0.9600
N1—C7 1.480 (6) C7—H7A 0.9700
N1—C1 1.481 (6) C7—H7B 0.9700
N1—C13 1.487 (6) C8—C9 1.368 (8)
N2—C4 1.339 (6) C8—C12 1.471 (8)
N2—N3 1.362 (5) C9—C10 1.389 (7)
N3—C2 1.349 (6) C9—H9A 0.9300
N3—C1 1.447 (6) C10—C11 1.495 (7)
N4—C10 1.332 (6) C11—H11B 0.9600
N4—N5 1.366 (5) C11—H11C 0.9600
N5—C8 1.358 (6) C11—H11D 0.9600
N5—C7 1.458 (6) C12—H12A 0.9600
O1—C14 1.427 (6) C12—H12B 0.9600
O1—H26 0.863 (10) C12—H12C 0.9600
O2—C15 1.251 (6) C13—C14 1.512 (6)
O3—C15 1.255 (5) C13—H13A 0.9700
O4—H27 0.858 (10) C13—H13B 0.9700
O4—H28 0.856 (10) C14—H14A 0.9700
O5—H29 0.861 (10) C14—H14B 0.9700
O5—H30 0.862 (10) C15—C16 1.494 (7)
C1—H1A 0.9700 C16—H16A 0.9600
C1—H1B 0.9700 C16—H16B 0.9600
C2—C3 1.371 (7) C16—H16C 0.9600
O2—Ni—N4 99.19 (16) C3—C4—C5 129.7 (5)
O2—Ni—N2 100.50 (15) C4—C5—H5A 109.5
N4—Ni—N2 160.25 (17) C4—C5—H5B 109.5
O2—Ni—O1 91.73 (14) H5A—C5—H5B 109.5
N4—Ni—O1 91.29 (15) C4—C5—H5C 109.5
N2—Ni—O1 89.70 (15) H5A—C5—H5C 109.5
O2—Ni—N1 172.99 (14) H5B—C5—H5C 109.5
N4—Ni—N1 80.69 (16) C2—C6—H6A 109.5
N2—Ni—N1 79.96 (16) C2—C6—H6B 109.5
O1—Ni—N1 81.27 (14) H6A—C6—H6B 109.5
O2—Ni—O4 94.35 (15) C2—C6—H6C 109.5
N4—Ni—O4 88.45 (16) H6A—C6—H6C 109.5
N2—Ni—O4 88.49 (16) H6B—C6—H6C 109.5
O1—Ni—O4 173.88 (16) N5—C7—N1 107.8 (4)
N1—Ni—O4 92.65 (16) N5—C7—H7A 110.1
O13—Cl—O14 112.4 (5) N1—C7—H7A 110.1
O13—Cl—O12 104.5 (6) N5—C7—H7B 110.1
O14—Cl—O12 106.4 (5) N1—C7—H7B 110.1
O13—Cl—O11 120.9 (6) H7A—C7—H7B 108.5
O14—Cl—O11 103.4 (6) N5—C8—C9 104.9 (5)
O12—Cl—O11 108.4 (7) N5—C8—C12 123.3 (6)
C7—N1—C1 111.1 (4) C9—C8—C12 131.9 (6)
C7—N1—C13 111.4 (4) C8—C9—C10 108.0 (5)
C1—N1—C13 113.6 (4) C8—C9—H9A 126.0
C7—N1—Ni 105.9 (3) C10—C9—H9A 126.0
C1—N1—Ni 106.1 (3) N4—C10—C9 109.6 (6)
C13—N1—Ni 108.2 (3) N4—C10—C11 121.0 (5)
C4—N2—N3 106.2 (4) C9—C10—C11 129.4 (5)
C4—N2—Ni 140.9 (4) C10—C11—H11B 109.5
N3—N2—Ni 111.4 (3) C10—C11—H11C 109.5
C2—N3—N2 111.7 (4) H11B—C11—H11C 109.5
C2—N3—C1 129.6 (5) C10—C11—H11D 109.5
N2—N3—C1 118.6 (4) H11B—C11—H11D 109.5
C10—N4—N5 105.4 (4) H11C—C11—H11D 109.5
C10—N4—Ni 142.9 (4) C8—C12—H12A 109.5
N5—N4—Ni 111.7 (3) C8—C12—H12B 109.5
C8—N5—N4 112.1 (5) H12A—C12—H12B 109.5
C8—N5—C7 128.1 (5) C8—C12—H12C 109.5
N4—N5—C7 118.5 (4) H12A—C12—H12C 109.5
C14—O1—Ni 109.7 (3) H12B—C12—H12C 109.5
C14—O1—H26 114 (4) N1—C13—C14 112.3 (4)
Ni—O1—H26 112 (4) N1—C13—H13A 109.2
C15—O2—Ni 127.3 (3) C14—C13—H13A 109.2
Ni—O4—H27 107 (3) N1—C13—H13B 109.2
Ni—O4—H28 99 (4) C14—C13—H13B 109.2
H27—O4—H28 108 (5) H13A—C13—H13B 107.9
H29—O5—H30 117 (3) O1—C14—C13 107.2 (4)
N3—C1—N1 107.7 (4) O1—C14—H14A 110.3
N3—C1—H1A 110.2 C13—C14—H14A 110.3
N1—C1—H1A 110.2 O1—C14—H14B 110.3
N3—C1—H1B 110.2 C13—C14—H14B 110.3
N1—C1—H1B 110.2 H14A—C14—H14B 108.5
H1A—C1—H1B 108.5 O2—C15—O3 124.8 (5)
N3—C2—C3 106.0 (5) O2—C15—C16 115.4 (5)
N3—C2—C6 122.5 (5) O3—C15—C16 119.8 (5)
C3—C2—C6 131.5 (5) C15—C16—H16A 109.5
C2—C3—C4 107.3 (5) C15—C16—H16B 109.5
C2—C3—H3A 126.4 H16A—C16—H16B 109.5
C4—C3—H3A 126.4 C15—C16—H16C 109.5
N2—C4—C3 108.8 (5) H16A—C16—H16C 109.5
N2—C4—C5 121.5 (5) H16B—C16—H16C 109.5
O2—Ni—N1—C7 118.3 (11) O4—Ni—O1—C14 18.1 (16)
N4—Ni—N1—C7 28.7 (3) N4—Ni—O2—C15 −115.7 (4)
N2—Ni—N1—C7 −147.3 (3) N2—Ni—O2—C15 62.7 (4)
O1—Ni—N1—C7 121.4 (3) O1—Ni—O2—C15 152.7 (4)
O4—Ni—N1—C7 −59.3 (3) N1—Ni—O2—C15 155.8 (11)
O2—Ni—N1—C1 −123.5 (11) O4—Ni—O2—C15 −26.6 (4)
N4—Ni—N1—C1 146.9 (3) C2—N3—C1—N1 145.0 (5)
N2—Ni—N1—C1 −29.1 (3) N2—N3—C1—N1 −38.1 (6)
O1—Ni—N1—C1 −120.4 (3) C7—N1—C1—N3 157.0 (4)
O4—Ni—N1—C1 58.9 (3) C13—N1—C1—N3 −76.5 (5)
O2—Ni—N1—C13 −1.3 (13) Ni—N1—C1—N3 42.3 (4)
N4—Ni—N1—C13 −90.9 (3) N2—N3—C2—C3 0.3 (6)
N2—Ni—N1—C13 93.1 (3) C1—N3—C2—C3 177.3 (5)
O1—Ni—N1—C13 1.9 (3) N2—N3—C2—C6 −177.1 (5)
O4—Ni—N1—C13 −178.9 (3) C1—N3—C2—C6 −0.1 (8)
O2—Ni—N2—C4 20.1 (6) N3—C2—C3—C4 0.6 (6)
N4—Ni—N2—C4 −164.6 (5) C6—C2—C3—C4 177.7 (6)
O1—Ni—N2—C4 −71.6 (5) N3—N2—C4—C3 1.4 (5)
N1—Ni—N2—C4 −152.8 (6) Ni—N2—C4—C3 165.0 (4)
O4—Ni—N2—C4 114.2 (5) N3—N2—C4—C5 −179.1 (4)
O2—Ni—N2—N3 −176.8 (3) Ni—N2—C4—C5 −15.5 (8)
N4—Ni—N2—N3 −1.5 (6) C2—C3—C4—N2 −1.3 (6)
O1—Ni—N2—N3 91.5 (3) C2—C3—C4—C5 179.3 (5)
N1—Ni—N2—N3 10.3 (3) C8—N5—C7—N1 −157.5 (5)
O4—Ni—N2—N3 −82.7 (3) N4—N5—C7—N1 36.8 (6)
C4—N2—N3—C2 −1.1 (5) C1—N1—C7—N5 −155.8 (4)
Ni—N2—N3—C2 −170.1 (3) C13—N1—C7—N5 76.5 (5)
C4—N2—N3—C1 −178.5 (4) Ni—N1—C7—N5 −41.0 (4)
Ni—N2—N3—C1 12.5 (5) N4—N5—C8—C9 −0.9 (6)
O2—Ni—N4—C10 −4.3 (6) C7—N5—C8—C9 −167.4 (5)
N2—Ni—N4—C10 −179.7 (5) N4—N5—C8—C12 177.7 (5)
O1—Ni—N4—C10 87.6 (6) C7—N5—C8—C12 11.2 (8)
N1—Ni—N4—C10 168.6 (6) N5—C8—C9—C10 0.4 (6)
O4—Ni—N4—C10 −98.5 (6) C12—C8—C9—C10 −178.0 (6)
O2—Ni—N4—N5 176.8 (3) N5—N4—C10—C9 −0.7 (5)
N2—Ni—N4—N5 1.4 (6) Ni—N4—C10—C9 −179.7 (4)
O1—Ni—N4—N5 −91.3 (3) N5—N4—C10—C11 −179.9 (4)
N1—Ni—N4—N5 −10.3 (3) Ni—N4—C10—C11 1.2 (8)
O4—Ni—N4—N5 82.6 (3) C8—C9—C10—N4 0.2 (6)
C10—N4—N5—C8 1.0 (5) C8—C9—C10—C11 179.2 (5)
Ni—N4—N5—C8 −179.6 (3) C7—N1—C13—C14 −143.8 (4)
C10—N4—N5—C7 169.0 (4) C1—N1—C13—C14 89.8 (5)
Ni—N4—N5—C7 −11.7 (5) Ni—N1—C13—C14 −27.7 (5)
O2—Ni—O1—C14 −155.1 (3) Ni—O1—C14—C13 −46.3 (4)
N4—Ni—O1—C14 105.7 (3) N1—C13—C14—O1 49.7 (5)
N2—Ni—O1—C14 −54.6 (3) Ni—O2—C15—O3 7.7 (7)
N1—Ni—O1—C14 25.3 (3) Ni—O2—C15—C16 −172.5 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H26···O3i 0.86 (1) 1.80 (1) 2.631 (10) 163 (1)
O4—H27···O5ii 0.86 (1) 2.03 (1) 2.882 (10) 171 (1)
O4—H28···O3 0.86 (1) 1.87 (1) 2.684 (10) 158 (5)
O5—H29···O11′ 0.86 (1) 1.84 (1) 2.695 (10) 174 (1)
O5—H29···O11 0.86 (1) 2.09 (1) 2.940 (10) 168 (1)
O5—H30···O12′iii 0.86 (1) 2.59 (1) 3.162 (10) 125 (1)

Symmetry codes: (i) −x−1, y+1/2, −z+3/2; (ii) x−1, y, z; (iii) −x, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5060).

References

  1. Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Koike, T., Kajitani, S., Nakamura, I., Kimura, E. & Shiro, M. (1995). J. Am. Chem. Soc. 117, 1210–1219.
  3. Lipscomb, W. N. & Sträter, N. (1996). Chem. Rev. 96, 2375–2434. [DOI] [PubMed]
  4. Malachowski, M. R., Davidson, M. G. & Davis, J. D. (1992). Heterocycles, 34, 1227–1230.
  5. Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Shin, J. W., Rowthu, S. R., Hyun, M. Y., Song, Y. J., Kim, C., Kim, B. G. & Min, K. S. (2011). Dalton Trans. 40, 5762–5773. [DOI] [PubMed]
  8. Sundaravel, K., Sankaralingam, M., Suresh, E. & Palaniandavar, M. (2011). Dalton Trans. 40, 8444–8458. [DOI] [PubMed]
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  10. Xia, J., Xu, Y., Li, S., Sun, W., Yu, K. & Tang, W. (2001). Inorg. Chem. 40, 2394–2401. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812007970/tk5060sup1.cif

e-68-0m399-sup1.cif (26.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812007970/tk5060Isup2.hkl

e-68-0m399-Isup2.hkl (247.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812007970/tk5060Isup3.mol

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES