Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 17;68(Pt 4):m435–m436. doi: 10.1107/S1600536812010902

Chlorido{4-cyclo­hexyl-1-[1-(pyridin-2-yl-κN)ethyl­idene]thio­semicarbazidato-κ2 N 1,S}diphenyl­tin(IV)

Md Abu Affan a, Md Abdus Salam a, Ismail Jusoh a, Seik Weng Ng b,c, Edward R T Tiekink b,*
PMCID: PMC3343835  PMID: 22589809

Abstract

The distorted octa­hedral geometry about the SnIV atom in the title compound, [Sn(C6H5)2(C14H19N4S)Cl], is defined by the N,N,S-tridentate Schiff base ligand, two mutually trans ipso-C atoms of the Sn-bound phenyl groups, and the Cl atom which is trans to the azo N atom. The two five-membered chelate rings and pyridyl ring are almost coplanar with the dihedral angle between the outer five-membered chelate and pyridine rings being 5.39 (8)°. Centrosymmetric dimers feature in the crystal packing mediated by N—H⋯S hydrogen bonds, leading to eight-membered {⋯HNCS}2 synthons. The dimeric aggregates are connected into a three-dimensional architecture by C—H⋯Cl and C—H⋯π inter­actions, as well as π–π inter­actions occurring between centrosymmetrically related pyridine rings [centroid–centroid distance = 3.6322 (13) Å].

Related literature  

For the crystal structure of the dichloridophenyl analogue, see: Salam et al. (2010). For a related structure, see: de Sousa et al. (2007).graphic file with name e-68-0m435-scheme1.jpg

Experimental  

Crystal data  

  • [Sn(C6H5)2(C14H19N4S)Cl]

  • M r = 583.73

  • Triclinic, Inline graphic

  • a = 9.7368 (4) Å

  • b = 9.9771 (4) Å

  • c = 13.4045 (5) Å

  • α = 90.103 (3)°

  • β = 97.013 (3)°

  • γ = 100.931 (4)°

  • V = 1268.57 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.22 mm−1

  • T = 100 K

  • 0.40 × 0.30 × 0.20 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.642, T max = 0.793

  • 8973 measured reflections

  • 5781 independent reflections

  • 5122 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.061

  • S = 1.00

  • 5781 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.58 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812010902/zl2462sup1.cif

e-68-0m435-sup1.cif (24.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010902/zl2462Isup2.hkl

e-68-0m435-Isup2.hkl (283KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Sn—C1 2.152 (2)
Sn—C7 2.159 (2)
Sn—N2 2.3100 (19)
Sn—N1 2.3869 (19)
Sn—S1 2.5209 (6)
Sn—Cl1 2.5449 (6)

Table 2. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H1⋯S1i 0.88 2.62 3.489 (2) 171
C13—H13⋯Cl1ii 0.95 2.73 3.415 (3) 129
C19—H19C⋯Cl1iii 0.98 2.85 3.809 (2) 166
C15—H15⋯Cg1iv 0.95 2.47 3.384 (3) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

We thank MOSTI (grant No. 06–01-09-SF0046) and the Universiti Malaysia Sarawak for supporting this study. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/3).

supplementary crystallographic information

Comment

The synthesis and crystal structure of the title compound was determined in connection with recent structural studies of organotin chlorido derivatives of thiosemicarbazones (Salam et al., 2010).

The Sn atom in the title compound, Fig. 1, exists within a six atom C2ClN2S donor set defined by the tridentate monodeprotonated Schiff base ligand, two mutually trans ipso-C atoms of the Sn-bound phenyl groups, and the Cl atom which is trans to the azo-N atom, Table 1. There are distortions from the ideal octahedral geometry which are ascribed to the restricted bite angles formed by the Schiff base ligand which result in an angle of 145.90 (5)° for the nominally trans S1—–Sn—–N1 angle. The disposition of donor atoms resembles that found in the structure of the N-4-morpholinyl derivative (de Sousa et al., 2007). Both five-membered rings are essentially planar with the r.m.s. deviations being 0.111 and 0.020 Å for the SnSN2C and SnN2C2 rings, respectively; the former ring has a small twist about the Sn—S1 bond with Sn and S1 atoms lying 0.068 (1) and -0.081 (1) Å out of the least-squares plane, respectively. The dihedral angle between the chelate rings is 3.42 (7)° and those between each of these and the pyridyl ring are 5.39 (8) and 2.29 (9)°, respectively, indicating an essentially planar arrangement of fused rings. Finally, the Sn-bound benzene rings are almost parallel with the dihedral angle being 8.72 (12)°.

The most significant feature in the crystal packing of the title compound is the formation of centrosymmetric dimers via N—H···S hydrogen bonds that lead to flat, eight-membered {···HNCS}2 synthons, Table 1. The dimeric aggregates are connected into a three dimensional architecture by C—H···Cl and C—H···π interactions, Table 1, as well as π—π interactions occurring between centrosymmetrically related pyridyl rings [centroid···centroid distance = 3.6322 (13) Å for symmetry operation: 1 - x, 1 - y, 2 - z], Fig. 2.

Experimental

2-Acetylpyridine-N-cyclohexylthiosemicarbazone (0.28 g, 1 mmol) was dissolved in methanol (10 ml) in a Schlenk flask under a nitrogen atmosphere. Diphenyltin(IV) dichloride (0.34 g, 1 mmol) dissolved in methanol (10 ml) was added. The yellow solution was refluxed for 4 h. Slow evaporation of the solvent gave a yellow compound (0.423 g). Recrystallization from a chloroform/methanol (1/1) mixture gave small dark-yellow prisms embedded in large light-yellow blocks. A small light-yellow specimen was cut from a light-yellow block for the diffraction measurements. The dark-yellow specimen proved to be (C6H5)Sn(C14H19N4S)Cl2 from unit cell determination (Salam et al., 2010).

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 1.00 Å, Uiso(H) = 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The amino H-atom was similarly treated [N—H = 0.88 Å with Uiso(H) = 1.2Ueq(N)]. Owing to poor agreement, several reflections, i.e. (2 6 8), (2 5 8), (2 6 7) and (2 4 8), were omitted from the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

Fig. 2.

Fig. 2.

A view in projection down the a axis of the unit-cell contents of the title compound. The N—H···S, C—H···Cl, C—H···π and π—π interactions are shown as orange, blue, brown and purple dashed lines, respectively.

Crystal data

[Sn(C6H5)2(C14H19N4S)Cl] Z = 2
Mr = 583.73 F(000) = 592
Triclinic, P1 Dx = 1.528 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.7368 (4) Å Cell parameters from 5479 reflections
b = 9.9771 (4) Å θ = 2.5–27.5°
c = 13.4045 (5) Å µ = 1.22 mm1
α = 90.103 (3)° T = 100 K
β = 97.013 (3)° Irregular, light-yellow
γ = 100.931 (4)° 0.40 × 0.30 × 0.20 mm
V = 1268.57 (9) Å3

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 5781 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 5122 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.029
Detector resolution: 10.4041 pixels mm-1 θmax = 27.6°, θmin = 2.5°
ω scan h = −12→12
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −10→12
Tmin = 0.642, Tmax = 0.793 l = −17→17
8973 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0216P)2] where P = (Fo2 + 2Fc2)/3
5781 reflections (Δ/σ)max = 0.001
299 parameters Δρmax = 0.51 e Å3
0 restraints Δρmin = −0.58 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn 0.336547 (16) 0.124100 (16) 0.775567 (11) 0.01076 (5)
Cl1 0.34918 (7) −0.11363 (6) 0.83991 (5) 0.02221 (14)
S1 0.13930 (6) 0.06101 (6) 0.63351 (4) 0.01420 (13)
N1 0.49818 (19) 0.3058 (2) 0.86673 (14) 0.0128 (4)
N2 0.31702 (19) 0.33125 (19) 0.70413 (14) 0.0111 (4)
N3 0.23447 (19) 0.3390 (2) 0.61378 (14) 0.0130 (4)
N4 0.08466 (19) 0.2234 (2) 0.48652 (14) 0.0144 (4)
H1 0.0336 0.1458 0.4612 0.017*
C1 0.5121 (2) 0.1152 (2) 0.69424 (17) 0.0139 (5)
C2 0.6324 (3) 0.0724 (3) 0.74073 (19) 0.0227 (6)
H2 0.6366 0.0452 0.8087 0.027*
C3 0.7461 (3) 0.0697 (3) 0.6874 (2) 0.0272 (6)
H3 0.8280 0.0414 0.7195 0.033*
C4 0.7409 (3) 0.1074 (3) 0.58891 (19) 0.0226 (6)
H4 0.8189 0.1052 0.5531 0.027*
C5 0.6220 (3) 0.1485 (3) 0.54170 (19) 0.0222 (6)
H5 0.6178 0.1733 0.4732 0.027*
C6 0.5085 (3) 0.1535 (3) 0.59448 (18) 0.0190 (5)
H6 0.4278 0.1835 0.5620 0.023*
C7 0.2074 (2) 0.1485 (2) 0.89180 (17) 0.0118 (5)
C8 0.2437 (3) 0.1153 (2) 0.99069 (17) 0.0173 (5)
H8 0.3282 0.0817 1.0086 0.021*
C9 0.1577 (3) 0.1305 (2) 1.06400 (18) 0.0187 (5)
H9 0.1843 0.1085 1.1316 0.022*
C10 0.0328 (3) 0.1780 (2) 1.03850 (19) 0.0189 (5)
H10 −0.0268 0.1868 1.0882 0.023*
C11 −0.0035 (2) 0.2120 (2) 0.94064 (18) 0.0184 (5)
H11 −0.0885 0.2447 0.9230 0.022*
C12 0.0832 (2) 0.1989 (2) 0.86723 (18) 0.0152 (5)
H12 0.0579 0.2243 0.8002 0.018*
C13 0.5906 (2) 0.2890 (3) 0.94570 (17) 0.0162 (5)
H13 0.5921 0.1992 0.9687 0.019*
C14 0.6845 (2) 0.3973 (3) 0.99555 (18) 0.0171 (5)
H14 0.7496 0.3821 1.0512 0.021*
C15 0.6809 (2) 0.5272 (3) 0.96253 (18) 0.0176 (5)
H15 0.7435 0.6035 0.9955 0.021*
C16 0.5851 (2) 0.5460 (2) 0.88041 (17) 0.0150 (5)
H16 0.5808 0.6352 0.8572 0.018*
C17 0.4954 (2) 0.4324 (2) 0.83251 (17) 0.0128 (5)
C18 0.3979 (2) 0.4439 (2) 0.74072 (17) 0.0128 (5)
C19 0.4031 (2) 0.5785 (2) 0.69161 (18) 0.0173 (5)
H19A 0.3328 0.5687 0.6319 0.026*
H19B 0.4973 0.6103 0.6718 0.026*
H19C 0.3828 0.6450 0.7389 0.026*
C20 0.1583 (2) 0.2215 (2) 0.57772 (17) 0.0125 (5)
C21 0.0833 (2) 0.3452 (2) 0.42632 (17) 0.0139 (5)
H21 0.0663 0.4201 0.4702 0.017*
C22 −0.0388 (2) 0.3141 (3) 0.34146 (18) 0.0179 (5)
H22A −0.0269 0.2359 0.3000 0.022*
H22B −0.1285 0.2879 0.3705 0.022*
C23 −0.0460 (3) 0.4371 (3) 0.27500 (19) 0.0235 (6)
H23A −0.1208 0.4111 0.2176 0.028*
H23B −0.0713 0.5110 0.3142 0.028*
C24 0.0936 (3) 0.4897 (3) 0.23527 (18) 0.0224 (6)
H24A 0.0875 0.5736 0.1971 0.027*
H24B 0.1133 0.4203 0.1890 0.027*
C25 0.2134 (3) 0.5208 (3) 0.32162 (19) 0.0222 (6)
H25A 0.3037 0.5521 0.2943 0.027*
H25B 0.1972 0.5950 0.3652 0.027*
C26 0.2223 (2) 0.3940 (3) 0.38360 (18) 0.0175 (5)
H26A 0.3003 0.4156 0.4393 0.021*
H26B 0.2419 0.3207 0.3407 0.021*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn 0.01145 (9) 0.01048 (9) 0.01016 (9) 0.00200 (6) 0.00073 (6) −0.00036 (6)
Cl1 0.0329 (4) 0.0148 (3) 0.0222 (3) 0.0097 (3) 0.0083 (3) 0.0050 (2)
S1 0.0159 (3) 0.0116 (3) 0.0131 (3) 0.0000 (2) −0.0020 (2) 0.0002 (2)
N1 0.0120 (10) 0.0146 (10) 0.0119 (10) 0.0019 (8) 0.0025 (8) −0.0009 (8)
N2 0.0097 (9) 0.0130 (10) 0.0109 (9) 0.0024 (8) 0.0019 (8) 0.0010 (8)
N3 0.0124 (10) 0.0128 (10) 0.0126 (10) 0.0018 (8) −0.0021 (8) 0.0013 (8)
N4 0.0152 (10) 0.0128 (10) 0.0127 (10) −0.0013 (8) −0.0017 (8) 0.0013 (8)
C1 0.0124 (12) 0.0134 (12) 0.0148 (12) −0.0001 (10) 0.0016 (9) −0.0014 (10)
C2 0.0195 (13) 0.0308 (16) 0.0201 (14) 0.0093 (12) 0.0041 (11) 0.0063 (12)
C3 0.0187 (14) 0.0354 (17) 0.0311 (16) 0.0123 (13) 0.0054 (12) 0.0020 (13)
C4 0.0183 (13) 0.0228 (14) 0.0276 (15) 0.0014 (11) 0.0108 (11) −0.0054 (11)
C5 0.0243 (14) 0.0253 (15) 0.0168 (13) 0.0014 (12) 0.0074 (11) 0.0002 (11)
C6 0.0166 (13) 0.0228 (14) 0.0188 (13) 0.0072 (11) 0.0017 (10) 0.0000 (11)
C7 0.0122 (11) 0.0097 (11) 0.0124 (11) −0.0019 (9) 0.0030 (9) −0.0020 (9)
C8 0.0194 (13) 0.0150 (13) 0.0175 (13) 0.0035 (10) 0.0022 (10) 0.0001 (10)
C9 0.0258 (14) 0.0164 (13) 0.0119 (12) −0.0011 (11) 0.0030 (10) 0.0015 (10)
C10 0.0197 (13) 0.0147 (13) 0.0229 (13) −0.0004 (11) 0.0111 (11) −0.0037 (10)
C11 0.0139 (12) 0.0172 (13) 0.0247 (14) 0.0034 (10) 0.0037 (10) −0.0019 (11)
C12 0.0158 (12) 0.0129 (12) 0.0161 (12) 0.0014 (10) 0.0004 (10) 0.0010 (10)
C13 0.0173 (12) 0.0201 (13) 0.0117 (12) 0.0050 (11) 0.0014 (10) −0.0015 (10)
C14 0.0133 (12) 0.0250 (14) 0.0119 (12) 0.0019 (11) −0.0007 (9) −0.0028 (10)
C15 0.0141 (12) 0.0201 (13) 0.0163 (12) −0.0030 (10) 0.0030 (10) −0.0042 (10)
C16 0.0144 (12) 0.0138 (12) 0.0164 (12) 0.0001 (10) 0.0042 (10) −0.0007 (10)
C17 0.0119 (11) 0.0145 (12) 0.0128 (11) 0.0018 (10) 0.0060 (9) 0.0004 (9)
C18 0.0088 (11) 0.0153 (12) 0.0149 (12) 0.0025 (10) 0.0034 (9) −0.0014 (10)
C19 0.0155 (12) 0.0123 (12) 0.0236 (13) 0.0009 (10) 0.0033 (10) 0.0004 (10)
C20 0.0095 (11) 0.0153 (12) 0.0140 (12) 0.0040 (10) 0.0034 (9) −0.0001 (9)
C21 0.0139 (12) 0.0124 (12) 0.0151 (12) 0.0013 (10) 0.0026 (9) 0.0043 (9)
C22 0.0151 (12) 0.0233 (14) 0.0147 (12) 0.0039 (11) −0.0015 (10) 0.0046 (10)
C23 0.0264 (14) 0.0284 (15) 0.0183 (13) 0.0127 (12) 0.0018 (11) 0.0063 (11)
C24 0.0300 (15) 0.0214 (14) 0.0190 (13) 0.0096 (12) 0.0083 (11) 0.0070 (11)
C25 0.0263 (14) 0.0204 (14) 0.0212 (14) 0.0027 (12) 0.0101 (11) 0.0016 (11)
C26 0.0142 (12) 0.0208 (13) 0.0172 (12) 0.0019 (10) 0.0035 (10) 0.0011 (10)

Geometric parameters (Å, º)

Sn—C1 2.152 (2) C11—C12 1.394 (3)
Sn—C7 2.159 (2) C11—H11 0.9500
Sn—N2 2.3100 (19) C12—H12 0.9500
Sn—N1 2.3869 (19) C13—C14 1.387 (3)
Sn—S1 2.5209 (6) C13—H13 0.9500
Sn—Cl1 2.5449 (6) C14—C15 1.376 (3)
S1—C20 1.756 (2) C14—H14 0.9500
N1—C13 1.335 (3) C15—C16 1.391 (3)
N1—C17 1.349 (3) C15—H15 0.9500
N2—C18 1.300 (3) C16—C17 1.394 (3)
N2—N3 1.380 (3) C16—H16 0.9500
N3—C20 1.319 (3) C17—C18 1.478 (3)
N4—C20 1.342 (3) C18—C19 1.492 (3)
N4—C21 1.461 (3) C19—H19A 0.9800
N4—H1 0.8800 C19—H19B 0.9800
C1—C6 1.390 (3) C19—H19C 0.9800
C1—C2 1.398 (3) C21—C22 1.527 (3)
C2—C3 1.394 (3) C21—C26 1.529 (3)
C2—H2 0.9500 C21—H21 1.0000
C3—C4 1.370 (4) C22—C23 1.525 (3)
C3—H3 0.9500 C22—H22A 0.9900
C4—C5 1.382 (3) C22—H22B 0.9900
C4—H4 0.9500 C23—C24 1.521 (3)
C5—C6 1.391 (3) C23—H23A 0.9900
C5—H5 0.9500 C23—H23B 0.9900
C6—H6 0.9500 C24—C25 1.526 (4)
C7—C8 1.387 (3) C24—H24A 0.9900
C7—C12 1.399 (3) C24—H24B 0.9900
C8—C9 1.393 (3) C25—C26 1.525 (3)
C8—H8 0.9500 C25—H25A 0.9900
C9—C10 1.391 (3) C25—H25B 0.9900
C9—H9 0.9500 C26—H26A 0.9900
C10—C11 1.377 (3) C26—H26B 0.9900
C10—H10 0.9500
C1—Sn—C7 163.82 (9) N1—C13—H13 118.7
C1—Sn—N2 89.52 (8) C14—C13—H13 118.7
C7—Sn—N2 94.19 (7) C15—C14—C13 118.4 (2)
C1—Sn—N1 83.36 (7) C15—C14—H14 120.8
C7—Sn—N1 83.23 (7) C13—C14—H14 120.8
N2—Sn—N1 69.43 (6) C14—C15—C16 119.4 (2)
C1—Sn—S1 98.90 (6) C14—C15—H15 120.3
C7—Sn—S1 97.28 (6) C16—C15—H15 120.3
N2—Sn—S1 76.55 (5) C15—C16—C17 119.3 (2)
N1—Sn—S1 145.90 (5) C15—C16—H16 120.4
C1—Sn—Cl1 89.13 (6) C17—C16—H16 120.4
C7—Sn—Cl1 88.37 (6) N1—C17—C16 120.7 (2)
N2—Sn—Cl1 175.15 (5) N1—C17—C18 117.1 (2)
N1—Sn—Cl1 115.02 (5) C16—C17—C18 122.1 (2)
S1—Sn—Cl1 99.07 (2) N2—C18—C17 116.6 (2)
C20—S1—Sn 96.99 (8) N2—C18—C19 123.7 (2)
C13—N1—C17 119.5 (2) C17—C18—C19 119.6 (2)
C13—N1—Sn 124.50 (16) C18—C19—H19A 109.5
C17—N1—Sn 115.98 (15) C18—C19—H19B 109.5
C18—N2—N3 116.92 (19) H19A—C19—H19B 109.5
C18—N2—Sn 120.81 (15) C18—C19—H19C 109.5
N3—N2—Sn 121.65 (14) H19A—C19—H19C 109.5
C20—N3—N2 114.79 (19) H19B—C19—H19C 109.5
C20—N4—C21 124.7 (2) N3—C20—N4 116.4 (2)
C20—N4—H1 117.7 N3—C20—S1 128.57 (18)
C21—N4—H1 117.7 N4—C20—S1 114.99 (17)
C6—C1—C2 118.7 (2) N4—C21—C22 108.65 (19)
C6—C1—Sn 120.44 (17) N4—C21—C26 112.62 (19)
C2—C1—Sn 120.87 (17) C22—C21—C26 110.39 (19)
C3—C2—C1 120.1 (2) N4—C21—H21 108.4
C3—C2—H2 120.0 C22—C21—H21 108.4
C1—C2—H2 120.0 C26—C21—H21 108.4
C4—C3—C2 120.6 (2) C23—C22—C21 111.4 (2)
C4—C3—H3 119.7 C23—C22—H22A 109.3
C2—C3—H3 119.7 C21—C22—H22A 109.3
C3—C4—C5 120.0 (2) C23—C22—H22B 109.3
C3—C4—H4 120.0 C21—C22—H22B 109.3
C5—C4—H4 120.0 H22A—C22—H22B 108.0
C4—C5—C6 120.0 (2) C24—C23—C22 111.7 (2)
C4—C5—H5 120.0 C24—C23—H23A 109.3
C6—C5—H5 120.0 C22—C23—H23A 109.3
C5—C6—C1 120.7 (2) C24—C23—H23B 109.3
C5—C6—H6 119.7 C22—C23—H23B 109.3
C1—C6—H6 119.7 H23A—C23—H23B 107.9
C8—C7—C12 118.7 (2) C23—C24—C25 110.7 (2)
C8—C7—Sn 121.86 (17) C23—C24—H24A 109.5
C12—C7—Sn 119.42 (17) C25—C24—H24A 109.5
C7—C8—C9 120.7 (2) C23—C24—H24B 109.5
C7—C8—H8 119.6 C25—C24—H24B 109.5
C9—C8—H8 119.6 H24A—C24—H24B 108.1
C10—C9—C8 120.2 (2) C26—C25—C24 110.5 (2)
C10—C9—H9 119.9 C26—C25—H25A 109.5
C8—C9—H9 119.9 C24—C25—H25A 109.5
C11—C10—C9 119.4 (2) C26—C25—H25B 109.5
C11—C10—H10 120.3 C24—C25—H25B 109.5
C9—C10—H10 120.3 H25A—C25—H25B 108.1
C10—C11—C12 120.6 (2) C25—C26—C21 109.84 (19)
C10—C11—H11 119.7 C25—C26—H26A 109.7
C12—C11—H11 119.7 C21—C26—H26A 109.7
C11—C12—C7 120.3 (2) C25—C26—H26B 109.7
C11—C12—H12 119.9 C21—C26—H26B 109.7
C7—C12—H12 119.9 H26A—C26—H26B 108.2
N1—C13—C14 122.7 (2)
C1—Sn—S1—C20 −78.66 (10) C1—Sn—C7—C12 146.1 (3)
C7—Sn—S1—C20 101.29 (9) N2—Sn—C7—C12 43.22 (19)
N2—Sn—S1—C20 8.70 (8) N1—Sn—C7—C12 111.91 (18)
N1—Sn—S1—C20 12.62 (11) S1—Sn—C7—C12 −33.73 (18)
Cl1—Sn—S1—C20 −169.21 (7) Cl1—Sn—C7—C12 −132.66 (18)
C1—Sn—N1—C13 −85.65 (17) C12—C7—C8—C9 0.6 (4)
C7—Sn—N1—C13 85.28 (17) Sn—C7—C8—C9 −179.28 (17)
N2—Sn—N1—C13 −177.64 (18) C7—C8—C9—C10 0.8 (4)
S1—Sn—N1—C13 178.28 (13) C8—C9—C10—C11 −1.2 (4)
Cl1—Sn—N1—C13 0.27 (18) C9—C10—C11—C12 0.2 (4)
C1—Sn—N1—C17 92.66 (16) C10—C11—C12—C7 1.2 (4)
C7—Sn—N1—C17 −96.41 (16) C8—C7—C12—C11 −1.5 (3)
N2—Sn—N1—C17 0.67 (14) Sn—C7—C12—C11 178.33 (17)
S1—Sn—N1—C17 −3.4 (2) C17—N1—C13—C14 0.6 (3)
Cl1—Sn—N1—C17 178.58 (13) Sn—N1—C13—C14 178.85 (16)
C1—Sn—N2—C18 −81.56 (17) N1—C13—C14—C15 0.6 (3)
C7—Sn—N2—C18 82.68 (17) C13—C14—C15—C16 −0.5 (3)
N1—Sn—N2—C18 1.53 (15) C14—C15—C16—C17 −0.7 (3)
S1—Sn—N2—C18 179.18 (17) C13—N1—C17—C16 −1.8 (3)
C1—Sn—N2—N3 89.24 (15) Sn—N1—C17—C16 179.77 (15)
C7—Sn—N2—N3 −106.53 (15) C13—N1—C17—C18 175.89 (18)
N1—Sn—N2—N3 172.32 (16) Sn—N1—C17—C18 −2.5 (2)
S1—Sn—N2—N3 −10.03 (13) C15—C16—C17—N1 1.9 (3)
C18—N2—N3—C20 177.56 (19) C15—C16—C17—C18 −175.72 (19)
Sn—N2—N3—C20 6.4 (2) N3—N2—C18—C17 −174.55 (17)
C7—Sn—C1—C6 −145.4 (3) Sn—N2—C18—C17 −3.3 (3)
N2—Sn—C1—C6 −41.8 (2) N3—N2—C18—C19 1.3 (3)
N1—Sn—C1—C6 −111.2 (2) Sn—N2—C18—C19 172.46 (16)
S1—Sn—C1—C6 34.5 (2) N1—C17—C18—N2 3.9 (3)
Cl1—Sn—C1—C6 133.5 (2) C16—C17—C18—N2 −178.5 (2)
C7—Sn—C1—C2 33.9 (4) N1—C17—C18—C19 −172.12 (19)
N2—Sn—C1—C2 137.4 (2) C16—C17—C18—C19 5.6 (3)
N1—Sn—C1—C2 68.1 (2) N2—N3—C20—N4 −175.27 (17)
S1—Sn—C1—C2 −146.28 (19) N2—N3—C20—S1 4.9 (3)
Cl1—Sn—C1—C2 −47.2 (2) C21—N4—C20—N3 −0.3 (3)
C6—C1—C2—C3 0.4 (4) C21—N4—C20—S1 179.50 (16)
Sn—C1—C2—C3 −178.8 (2) Sn—S1—C20—N3 −11.4 (2)
C1—C2—C3—C4 −0.6 (4) Sn—S1—C20—N4 168.86 (15)
C2—C3—C4—C5 0.0 (4) C20—N4—C21—C22 −165.9 (2)
C3—C4—C5—C6 0.9 (4) C20—N4—C21—C26 71.5 (3)
C4—C5—C6—C1 −1.2 (4) N4—C21—C22—C23 −179.67 (18)
C2—C1—C6—C5 0.5 (4) C26—C21—C22—C23 −55.7 (3)
Sn—C1—C6—C5 179.74 (18) C21—C22—C23—C24 54.1 (3)
C1—Sn—C7—C8 −34.0 (4) C22—C23—C24—C25 −54.7 (3)
N2—Sn—C7—C8 −136.91 (19) C23—C24—C25—C26 57.5 (3)
N1—Sn—C7—C8 −68.22 (19) C24—C25—C26—C21 −59.4 (3)
S1—Sn—C7—C8 146.14 (19) N4—C21—C26—C25 179.88 (19)
Cl1—Sn—C7—C8 47.21 (19) C22—C21—C26—C25 58.2 (3)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C7–C12 ring.

D—H···A D—H H···A D···A D—H···A
N4—H1···S1i 0.88 2.62 3.489 (2) 171
C13—H13···Cl1ii 0.95 2.73 3.415 (3) 129
C19—H19C···Cl1iii 0.98 2.85 3.809 (2) 166
C15—H15···Cg1iv 0.95 2.47 3.384 (3) 162

Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y, −z+2; (iii) x, y+1, z; (iv) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2462).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  3. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Salam, M. A., Affan, M. A., Ahmad, F. B., Tahir, M. I. M. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m1503–m1504. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Sousa, G. F. de, Manso, L. C. C., Lang, E. S., Gatto, C. C. & Mahieu, B. (2007). J. Mol. Struct. 826, 185–191.
  7. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812010902/zl2462sup1.cif

e-68-0m435-sup1.cif (24.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010902/zl2462Isup2.hkl

e-68-0m435-Isup2.hkl (283KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES