Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 17;68(Pt 4):m443. doi: 10.1107/S1600536812010835

(2,9-Dimethyl-1,10-phenanthroline-κ2 N,N′)bis­(2-meth­oxy­benzoato-κ2 O 1,O 1′)cadmium

Heng Zhang a, Pei-Zheng Zhao a,*
PMCID: PMC3343841  PMID: 22589815

Abstract

In the title compound, [Cd(C8H7O3)2(C14H12N2)], the CdII ion is coordinated by two N atoms from a 2,9-dimethyl-1,10-phenanthroline (dmphen) ligand and four O atoms from two 2-meth­oxy­benzoate anions in a distorted octa­hedral environment. Two O atoms of one bidentate 2-meth­oxy­benzoate ligand are each disordered over two positions, with site-occupancy factors of 0.579 (4) and 0.421 (4). In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming a two-dimensional network lieing parallel to the bc plane. The crystal packing is further stablized by π–π stacking inter­actions between the dmphen rings of neighboring mol­ecules, with distances between their parallel dmphen ring planes of 3.517 (3) and 3.610 (3) Å.

Related literature  

For features of transition metal complexes with 1,10-phenanthroline and their derivatives, see: Dhar et al. (2003); Mizuno et al. (2002); Wall et al. (1999). For related structures, see: Harvey et al. (2000); Ding et al. (2005); Cui & Zhang (2011)graphic file with name e-68-0m443-scheme1.jpg

Experimental  

Crystal data  

  • [Cd(C8H7O3)2(C14H12N2)]

  • M r = 622.93

  • Monoclinic, Inline graphic

  • a = 16.9045 (12) Å

  • b = 8.0547 (6) Å

  • c = 19.3625 (14) Å

  • β = 101.877 (1)°

  • V = 2580.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 296 K

  • 0.48 × 0.26 × 0.17 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.673, T max = 0.863

  • 18898 measured reflections

  • 4803 independent reflections

  • 4307 reflections with I > 2σ(I)

  • R int = 0.017

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.023

  • wR(F 2) = 0.060

  • S = 1.02

  • 4803 reflections

  • 363 parameters

  • 44 restraints

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812010835/bg2438sup1.cif

e-68-0m443-sup1.cif (24.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010835/bg2438Isup2.hkl

e-68-0m443-Isup2.hkl (235.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯O5i 0.93 2.46 3.312 (3) 152
C17—H17⋯O6ii 0.93 2.60 3.487 (3) 161
C14—H14A⋯O4 0.96 2.45 3.322 (3) 150
C6—H6⋯O5iii 0.93 2.55 3.206 (3) 128

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

Financial support from the National Natural Science Foundation of Henan Education Committee (2011 A150018) is gratefully acknowledged.

supplementary crystallographic information

Comment

The transition metal complexes with 1,10-phenanthroline and their derivatives have attracted much attention because of their peculiar features (Dhar et al., 2003; Mizuno et al., 2002; Wall et al., 1999). Some Cd(II)-phenanthroline complexes have been synthesized and their structures were determined (Harvey et al., 2000; Ding et al., 2005; Cui et al., 2011). Recently, we obtained the title Cadmium(II) complex which contains two different kinds of chelating ligands, by reaction of 2,9-dimethyl-1,10-phenanthroline, 2-methoxy-benzoate and cadmium acetate in an ethanol/water mixture. The structure of the title compound, Cd(C14H12N2)(C8H7O3)2,(I), is presented below.

The CdII ion is coordinated by a bidentate 2,9-dimethyl-1,10-phenanthroline and two bidentate 2-methoxy-benzoate ligands (Fig.1). The CdO4N2 unit forms a distorted octahedron geometry. Two O atoms of one bidentate 2-methoxy-benzoate are disordered over two positions, with site occupancy factors of ca 0.579 (4) and 0.421 (4).

In the crystal structure, molecules are linked into a broad one-dimensional framework by C—H···O hydrogen bonds and π-π stacking interactions between the dmphen rings of neighboring molecules, where vicinal aromatic groups present a face-to-face separations of 3.517 (3) and 3.610 (3) Å. (Fig. 2).

Experimental

2,9-dimethyl-1,10-phenanthroline hemihydrate (C14H12N2.0.5H2O, 0.1086 g, 0.5 mmol) was dissolved in ethanol (10 ml) and Cd(CH3COO)2.2H2O (0.1333 g, 0.5 mmol) in distilled water (5 ml) were added. This solution was added to a solution of 2-methoxy-benzoic acid (C8H8O3, 0.1522 g, 1 mmol) in ethanol (5 ml). The mixture was stirred at 323 K and then refluxed for 11 h, cooled to room temperature and filtered. Colourless single crystals of (I) appeared over a period of two weeks by slow evaporation of the mixture at room temperature.

Refinement

Methyl H atoms were placed in calculated positions,with C—H=0.96 Å, and refined with free torsion angles to fit the electron density; Uiso(H) = 1.5Ueq(carrier). Other H atoms were placed in calculated positions, with C—H=0.93 Å, and refined in the riding-model approximation with Uiso(H) = 1.2Ueq(C). Two O atoms of one bidentate 2-methoxy-benzoate are disordered over two positions, with site occupancy factors of 0.579 (4) and 0.421 (4). The disordreed moieties were refined with similarity restraints both in distances as in U's.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title complex(I), with atom labels and 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The hydrogen-bonding motifs in the crystal structure of (I). Dashed lines indicate hydrogen bonds and π-π interaction between the dmphen rings of neighboring molecules in the crystal structure of (I).[Symmetry codes:(B)x, y + 1, z; (C)x, y + 2, z; (D)-x + 1, -y, -z; (E)-x + 1, -y + 1, -z; (F)-x + 1, -y + 2, -z + 1/2]

Crystal data

[Cd(C8H7O3)2(C14H12N2)] F(000) = 1264
Mr = 622.93 Dx = 1.604 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9957 reflections
a = 16.9045 (12) Å θ = 2.5–28.2°
b = 8.0547 (6) Å µ = 0.90 mm1
c = 19.3625 (14) Å T = 296 K
β = 101.877 (1)° Block, colourless
V = 2580.0 (3) Å3 0.48 × 0.26 × 0.17 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 4803 independent reflections
Radiation source: fine-focus sealed tube 4307 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.017
phi and ω scans θmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −20→20
Tmin = 0.673, Tmax = 0.863 k = −9→9
18898 measured reflections l = −23→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0297P)2 + 1.5264P] where P = (Fo2 + 2Fc2)/3
4803 reflections (Δ/σ)max = 0.001
363 parameters Δρmax = 0.59 e Å3
44 restraints Δρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.30422 (17) 0.4057 (4) 0.12323 (16) 0.0450 (4) 0.579 (4)
O2 0.20884 (17) 0.2183 (4) 0.12535 (17) 0.0494 (4) 0.579 (4)
O1' 0.2860 (3) 0.4050 (6) 0.1036 (2) 0.0450 (4) 0.421 (4)
O2' 0.2352 (3) 0.1914 (5) 0.1509 (2) 0.0494 (4) 0.421 (4)
Cd1 0.307440 (8) 0.144637 (19) 0.062350 (7) 0.03648 (5)
O3 0.15835 (11) 0.2486 (2) 0.25184 (8) 0.0552 (4)
O4 0.20186 (9) 0.05972 (19) −0.02720 (8) 0.0483 (4)
O5 0.25548 (9) −0.12268 (18) 0.05286 (8) 0.0460 (4)
O6 0.04132 (8) −0.00151 (19) −0.07279 (8) 0.0473 (4)
N1 0.43234 (10) 0.0689 (2) 0.13255 (9) 0.0425 (4)
N2 0.40861 (10) 0.2261 (2) 0.00289 (9) 0.0404 (4)
C1 0.44175 (16) −0.0095 (3) 0.19443 (12) 0.0563 (6)
C2 0.51880 (18) −0.0427 (4) 0.23466 (15) 0.0736 (9)
H2 0.5244 −0.0980 0.2775 0.088*
C3 0.58528 (18) 0.0059 (4) 0.21110 (17) 0.0778 (9)
H3 0.6364 −0.0158 0.2381 0.093*
C4 0.57759 (14) 0.0884 (3) 0.14638 (16) 0.0625 (7)
C5 0.64459 (16) 0.1445 (4) 0.1188 (2) 0.0816 (10)
H5 0.6968 0.1268 0.1445 0.098*
C6 0.63385 (15) 0.2224 (4) 0.0567 (2) 0.0784 (9)
H6 0.6789 0.2588 0.0404 0.094*
C7 0.55435 (14) 0.2517 (3) 0.01409 (15) 0.0587 (6)
C8 0.54051 (17) 0.3281 (3) −0.05163 (17) 0.0725 (8)
H8 0.5840 0.3638 −0.0704 0.087*
C9 0.4639 (2) 0.3511 (3) −0.08871 (15) 0.0700 (8)
H9 0.4551 0.4006 −0.1330 0.084*
C10 0.39695 (15) 0.2994 (3) −0.05982 (12) 0.0520 (6)
C11 0.48584 (12) 0.2002 (3) 0.03993 (12) 0.0443 (5)
C12 0.49803 (13) 0.1175 (3) 0.10742 (13) 0.0448 (5)
C13 0.36708 (19) −0.0598 (4) 0.21911 (14) 0.0796 (9)
H13A 0.3348 0.0366 0.2227 0.119*
H13B 0.3819 −0.1120 0.2645 0.119*
H13C 0.3366 −0.1364 0.1860 0.119*
C14 0.31198 (18) 0.3251 (4) −0.09904 (14) 0.0695 (8)
H14A 0.2806 0.2278 −0.0946 0.104*
H14B 0.3117 0.3450 −0.1480 0.104*
H14C 0.2891 0.4190 −0.0797 0.104*
C15 0.20540 (11) 0.4688 (3) 0.18954 (10) 0.0353 (4)
C16 0.16481 (12) 0.4150 (3) 0.24222 (10) 0.0387 (5)
C17 0.13494 (13) 0.5310 (3) 0.28312 (12) 0.0479 (5)
H17 0.1091 0.4955 0.3185 0.057*
C18 0.14315 (14) 0.6992 (3) 0.27181 (13) 0.0516 (6)
H18 0.1228 0.7758 0.2996 0.062*
C19 0.18119 (13) 0.7540 (3) 0.21972 (12) 0.0482 (5)
H19 0.1862 0.8670 0.2118 0.058*
C20 0.21190 (13) 0.6384 (3) 0.17919 (11) 0.0416 (5)
H20 0.2376 0.6755 0.1440 0.050*
C21 0.24280 (12) 0.3527 (3) 0.14442 (11) 0.0405 (4)
C22 0.1085 (2) 0.1952 (4) 0.29900 (16) 0.0758 (8)
H22A 0.1299 0.2374 0.3454 0.114*
H22B 0.1076 0.0761 0.3004 0.114*
H22C 0.0545 0.2361 0.2828 0.114*
C23 0.13813 (11) −0.2080 (3) −0.02853 (10) 0.0351 (4)
C24 0.05986 (12) −0.1656 (3) −0.06558 (10) 0.0384 (5)
C25 0.00480 (13) −0.2911 (3) −0.09126 (12) 0.0495 (6)
H25 −0.0467 −0.2638 −0.1161 0.059*
C26 0.02634 (15) −0.4555 (3) −0.07995 (13) 0.0562 (6)
H26 −0.0107 −0.5380 −0.0978 0.067*
C27 0.10208 (15) −0.4998 (3) −0.04248 (12) 0.0519 (6)
H27 0.1160 −0.6109 −0.0346 0.062*
C28 0.15693 (13) −0.3753 (3) −0.01683 (11) 0.0422 (5)
H28 0.2077 −0.4043 0.0089 0.051*
C29 0.20123 (11) −0.0812 (3) 0.00066 (10) 0.0345 (4)
C30 −0.03947 (14) 0.0418 (4) −0.10615 (14) 0.0611 (7)
H30A −0.0494 0.0086 −0.1548 0.092*
H30B −0.0465 0.1597 −0.1033 0.092*
H30C −0.0768 −0.0138 −0.0828 0.092*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0453 (7) 0.0492 (6) 0.0427 (9) 0.0018 (6) 0.0146 (7) −0.0052 (6)
O2 0.0472 (8) 0.0521 (7) 0.0521 (9) −0.0004 (6) 0.0172 (7) −0.0110 (7)
O1' 0.0453 (7) 0.0492 (6) 0.0427 (9) 0.0018 (6) 0.0146 (7) −0.0052 (6)
O2' 0.0472 (8) 0.0521 (7) 0.0521 (9) −0.0004 (6) 0.0172 (7) −0.0110 (7)
Cd1 0.02953 (8) 0.04385 (9) 0.03711 (8) −0.00541 (6) 0.00932 (6) −0.00570 (6)
O3 0.0769 (11) 0.0434 (9) 0.0519 (9) −0.0021 (8) 0.0286 (8) 0.0021 (7)
O4 0.0421 (8) 0.0463 (9) 0.0512 (9) −0.0114 (7) −0.0027 (7) 0.0072 (7)
O5 0.0435 (8) 0.0485 (9) 0.0412 (8) −0.0067 (7) −0.0027 (7) 0.0022 (6)
O6 0.0338 (7) 0.0507 (9) 0.0547 (9) 0.0001 (7) 0.0029 (6) 0.0011 (7)
N1 0.0392 (9) 0.0404 (9) 0.0450 (10) −0.0038 (8) 0.0015 (8) −0.0075 (8)
N2 0.0408 (9) 0.0401 (9) 0.0438 (9) −0.0072 (8) 0.0170 (8) −0.0088 (8)
C1 0.0659 (15) 0.0497 (14) 0.0444 (13) −0.0037 (12) −0.0096 (11) −0.0048 (11)
C2 0.0766 (19) 0.0648 (17) 0.0639 (17) 0.0070 (15) −0.0215 (15) −0.0022 (14)
C3 0.0603 (16) 0.0705 (18) 0.084 (2) 0.0167 (15) −0.0292 (15) −0.0167 (16)
C4 0.0367 (12) 0.0559 (14) 0.0887 (19) 0.0029 (11) −0.0017 (12) −0.0290 (14)
C5 0.0339 (13) 0.077 (2) 0.130 (3) 0.0012 (13) 0.0076 (16) −0.0381 (19)
C6 0.0363 (12) 0.0722 (18) 0.137 (3) −0.0151 (12) 0.0415 (15) −0.0456 (19)
C7 0.0500 (12) 0.0493 (13) 0.0879 (17) −0.0141 (11) 0.0403 (12) −0.0275 (13)
C8 0.0705 (16) 0.0641 (17) 0.101 (2) −0.0256 (13) 0.0593 (16) −0.0288 (15)
C9 0.099 (2) 0.0605 (16) 0.0643 (16) −0.0215 (15) 0.0495 (16) −0.0069 (13)
C10 0.0627 (14) 0.0468 (12) 0.0520 (13) −0.0112 (11) 0.0243 (11) −0.0067 (11)
C11 0.0339 (10) 0.0379 (11) 0.0653 (14) −0.0075 (9) 0.0198 (10) −0.0226 (10)
C12 0.0342 (10) 0.0397 (11) 0.0579 (13) −0.0007 (9) 0.0039 (10) −0.0179 (10)
C13 0.089 (2) 0.096 (2) 0.0483 (14) −0.0276 (18) 0.0030 (14) 0.0169 (15)
C14 0.0814 (19) 0.0728 (18) 0.0538 (15) −0.0059 (15) 0.0128 (14) 0.0141 (13)
C15 0.0286 (9) 0.0458 (11) 0.0301 (9) 0.0018 (8) 0.0026 (7) −0.0014 (8)
C16 0.0364 (10) 0.0446 (11) 0.0347 (10) 0.0004 (9) 0.0065 (8) 0.0014 (9)
C17 0.0482 (12) 0.0548 (14) 0.0460 (12) 0.0004 (10) 0.0220 (10) −0.0021 (10)
C18 0.0496 (12) 0.0521 (13) 0.0566 (13) 0.0092 (11) 0.0192 (11) −0.0078 (11)
C19 0.0484 (12) 0.0401 (12) 0.0558 (13) 0.0055 (10) 0.0103 (10) 0.0040 (10)
C20 0.0373 (11) 0.0501 (12) 0.0376 (11) −0.0003 (9) 0.0080 (9) 0.0049 (9)
C21 0.0389 (7) 0.0452 (7) 0.0374 (7) 0.0038 (5) 0.0080 (5) −0.0022 (5)
C22 0.105 (2) 0.0601 (16) 0.0738 (18) −0.0175 (16) 0.0444 (17) 0.0048 (14)
C23 0.0340 (9) 0.0429 (11) 0.0308 (9) −0.0057 (9) 0.0121 (8) −0.0045 (8)
C24 0.0349 (10) 0.0487 (12) 0.0339 (10) −0.0069 (9) 0.0123 (8) −0.0047 (9)
C25 0.0380 (11) 0.0634 (15) 0.0467 (12) −0.0119 (11) 0.0080 (9) −0.0099 (11)
C26 0.0549 (13) 0.0560 (15) 0.0600 (14) −0.0227 (11) 0.0170 (11) −0.0167 (12)
C27 0.0642 (14) 0.0415 (12) 0.0551 (13) −0.0086 (11) 0.0242 (11) −0.0073 (10)
C28 0.0433 (11) 0.0467 (12) 0.0395 (11) −0.0021 (9) 0.0151 (9) −0.0047 (9)
C29 0.0293 (9) 0.0435 (11) 0.0324 (9) −0.0020 (8) 0.0107 (8) −0.0041 (8)
C30 0.0420 (12) 0.0708 (17) 0.0654 (16) 0.0091 (12) −0.0007 (11) −0.0055 (13)

Geometric parameters (Å, º)

O1—C21 1.266 (3) C8—H8 0.9300
O1—Cd1 2.416 (3) C9—C10 1.424 (4)
O2—C21 1.245 (3) C9—H9 0.9300
O2—Cd1 2.336 (3) C10—C14 1.495 (4)
O1'—C21 1.254 (4) C11—C12 1.443 (3)
O1'—Cd1 2.299 (5) C13—H13A 0.9600
O2'—C21 1.314 (4) C13—H13B 0.9600
O2'—Cd1 2.331 (4) C13—H13C 0.9600
Cd1—O5 2.3184 (15) C14—H14A 0.9600
Cd1—O4 2.3207 (14) C14—H14B 0.9600
Cd1—N2 2.3435 (16) C14—H14C 0.9600
Cd1—N1 2.3444 (17) C15—C20 1.388 (3)
Cd1—C29 2.660 (2) C15—C16 1.410 (3)
Cd1—C21 2.691 (2) C15—C21 1.505 (3)
O3—C16 1.361 (3) C16—C17 1.385 (3)
O3—C22 1.430 (3) C17—C18 1.384 (3)
O4—C29 1.258 (3) C17—H17 0.9300
O5—C29 1.262 (2) C18—C19 1.376 (3)
O6—C24 1.359 (3) C18—H18 0.9300
O6—C30 1.429 (3) C19—C20 1.385 (3)
N1—C1 1.335 (3) C19—H19 0.9300
N1—C12 1.359 (3) C20—H20 0.9300
N2—C10 1.328 (3) C22—H22A 0.9600
N2—C11 1.370 (3) C22—H22B 0.9600
C1—C2 1.399 (4) C22—H22C 0.9600
C1—C13 1.495 (4) C23—C28 1.392 (3)
C2—C3 1.355 (5) C23—C24 1.411 (3)
C2—H2 0.9300 C23—C29 1.501 (3)
C3—C4 1.401 (4) C24—C25 1.395 (3)
C3—H3 0.9300 C25—C26 1.378 (4)
C4—C12 1.419 (3) C25—H25 0.9300
C4—C5 1.421 (4) C26—C27 1.382 (3)
C5—C6 1.336 (5) C26—H26 0.9300
C5—H5 0.9300 C27—C28 1.387 (3)
C6—C7 1.444 (4) C27—H27 0.9300
C6—H6 0.9300 C28—H28 0.9300
C7—C8 1.389 (4) C30—H30A 0.9600
C7—C11 1.415 (3) C30—H30B 0.9600
C8—C9 1.358 (4) C30—H30C 0.9600
C21—O1—Cd1 88.12 (18) C7—C11—C12 118.7 (2)
C21—O2—Cd1 92.34 (17) N1—C12—C4 121.1 (2)
C21—O1'—Cd1 93.8 (3) N1—C12—C11 118.83 (18)
C21—O2'—Cd1 90.8 (2) C4—C12—C11 120.0 (2)
O1'—Cd1—O5 142.22 (10) C1—C13—H13A 109.5
O1'—Cd1—O4 112.12 (12) C1—C13—H13B 109.5
O5—Cd1—O4 56.39 (5) H13A—C13—H13B 109.5
O1'—Cd1—O2' 56.84 (12) C1—C13—H13C 109.5
O5—Cd1—O2' 87.78 (10) H13A—C13—H13C 109.5
O4—Cd1—O2' 99.14 (12) H13B—C13—H13C 109.5
O5—Cd1—O2 88.74 (8) C10—C14—H14A 109.5
O4—Cd1—O2 86.75 (8) C10—C14—H14B 109.5
O1'—Cd1—N2 95.65 (10) H14A—C14—H14B 109.5
O5—Cd1—N2 121.61 (6) C10—C14—H14C 109.5
O4—Cd1—N2 104.02 (6) H14A—C14—H14C 109.5
O2'—Cd1—N2 149.50 (10) H14B—C14—H14C 109.5
O2—Cd1—N2 148.95 (8) C20—C15—C16 118.13 (19)
O1'—Cd1—N1 102.91 (12) C20—C15—C21 118.20 (18)
O5—Cd1—N1 94.91 (6) C16—C15—C21 123.67 (19)
O4—Cd1—N1 144.97 (6) O3—C16—C17 122.47 (19)
O2'—Cd1—N1 99.26 (12) O3—C16—C15 117.81 (18)
O2—Cd1—N1 114.69 (9) C17—C16—C15 119.7 (2)
N2—Cd1—N1 72.33 (6) C18—C17—C16 120.6 (2)
O5—Cd1—O1 143.18 (8) C18—C17—H17 119.7
O4—Cd1—O1 121.99 (8) C16—C17—H17 119.7
O2—Cd1—O1 55.52 (9) C19—C18—C17 120.5 (2)
N2—Cd1—O1 95.04 (8) C19—C18—H18 119.8
N1—Cd1—O1 92.96 (8) C17—C18—H18 119.8
O1'—Cd1—C29 129.77 (11) C18—C19—C20 119.1 (2)
O2'—Cd1—C29 91.94 (11) C18—C19—H19 120.5
O2—Cd1—C29 85.42 (8) C20—C19—H19 120.5
N2—Cd1—C29 117.66 (6) C19—C20—C15 122.0 (2)
N1—Cd1—C29 121.76 (6) C19—C20—H20 119.0
O1—Cd1—C29 137.15 (8) C15—C20—H20 119.0
O1'—Cd1—C21 27.70 (10) O2—C21—O1' 113.5 (3)
O5—Cd1—C21 115.59 (6) O2—C21—O1 123.7 (3)
O4—Cd1—C21 106.35 (6) O1'—C21—O2' 118.2 (3)
O2—Cd1—C21 27.53 (8) O1—C21—O2' 117.8 (3)
N2—Cd1—C21 122.80 (6) O2—C21—C15 119.3 (2)
N1—Cd1—C21 104.26 (6) O1'—C21—C15 121.7 (3)
C29—Cd1—C21 111.87 (6) O1—C21—C15 116.7 (2)
C16—O3—C22 117.27 (19) O2'—C21—C15 119.9 (2)
C29—O4—Cd1 91.07 (11) O2—C21—Cd1 60.13 (15)
C29—O5—Cd1 91.08 (12) O1'—C21—Cd1 58.5 (2)
C24—O6—C30 117.56 (18) O1—C21—Cd1 63.82 (17)
C1—N1—C12 120.2 (2) O2'—C21—Cd1 60.0 (2)
C1—N1—Cd1 124.78 (16) C15—C21—Cd1 179.11 (14)
C12—N1—Cd1 114.99 (14) O3—C22—H22A 109.5
C10—N2—C11 119.51 (19) O3—C22—H22B 109.5
C10—N2—Cd1 126.00 (15) H22A—C22—H22B 109.5
C11—N2—Cd1 114.41 (14) O3—C22—H22C 109.5
N1—C1—C2 121.0 (3) H22A—C22—H22C 109.5
N1—C1—C13 117.6 (2) H22B—C22—H22C 109.5
C2—C1—C13 121.4 (3) C28—C23—C24 118.41 (18)
C3—C2—C1 119.9 (3) C28—C23—C29 118.45 (18)
C3—C2—H2 120.0 C24—C23—C29 123.11 (19)
C1—C2—H2 120.0 O6—C24—C25 123.07 (19)
C2—C3—C4 120.5 (2) O6—C24—C23 117.39 (17)
C2—C3—H3 119.8 C25—C24—C23 119.5 (2)
C4—C3—H3 119.8 C26—C25—C24 120.3 (2)
C3—C4—C12 117.2 (3) C26—C25—H25 119.9
C3—C4—C5 123.5 (3) C24—C25—H25 119.9
C12—C4—C5 119.3 (3) C25—C26—C27 121.2 (2)
C6—C5—C4 121.1 (3) C25—C26—H26 119.4
C6—C5—H5 119.5 C27—C26—H26 119.4
C4—C5—H5 119.5 C26—C27—C28 118.7 (2)
C5—C6—C7 122.0 (3) C26—C27—H27 120.7
C5—C6—H6 119.0 C28—C27—H27 120.7
C7—C6—H6 119.0 C27—C28—C23 121.9 (2)
C8—C7—C11 117.3 (2) C27—C28—H28 119.1
C8—C7—C6 123.9 (2) C23—C28—H28 119.1
C11—C7—C6 118.9 (3) O4—C29—O5 120.88 (18)
C9—C8—C7 120.5 (2) O4—C29—C23 121.38 (17)
C9—C8—H8 119.8 O5—C29—C23 117.70 (18)
C7—C8—H8 119.8 O4—C29—Cd1 60.71 (10)
C8—C9—C10 120.1 (3) O5—C29—Cd1 60.61 (10)
C8—C9—H9 120.0 C23—C29—Cd1 175.00 (13)
C10—C9—H9 120.0 O6—C30—H30A 109.5
N2—C10—C9 120.6 (2) O6—C30—H30B 109.5
N2—C10—C14 118.2 (2) H30A—C30—H30B 109.5
C9—C10—C14 121.2 (2) O6—C30—H30C 109.5
N2—C11—C7 122.1 (2) H30A—C30—H30C 109.5
N2—C11—C12 119.18 (18) H30B—C30—H30C 109.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C20—H20···O5i 0.93 2.46 3.312 (3) 152
C17—H17···O6ii 0.93 2.60 3.487 (3) 161
C14—H14A···O4 0.96 2.45 3.322 (3) 150
C6—H6···O5iii 0.93 2.55 3.206 (3) 128

Symmetry codes: (i) x, y+1, z; (ii) x, −y+1/2, z+1/2; (iii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2438).

References

  1. Bruker (2004). SAINT, SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cui, F. & Zhang, S. (2011). Acta Cryst. E67, m1247. [DOI] [PMC free article] [PubMed]
  3. Dhar, S., Senapatic, D., Das, P. K., Chattopadhyay, P., Nethaji, M. & Chakravarty, A. K. (2003). J. Am. Chem. Soc. 125, 12118–12124. [DOI] [PubMed]
  4. Ding, C.-F., Zhu, M., Li, X.-M., Ouyang, P.-K. & Zhang, S.-S. (2005). Acta Cryst. E61, m2058–m2059.
  5. Harvey, M., Baggio, S., Suescun, L. & Baggio, R. F. (2000). Acta Cryst. C56, 811–813. [DOI] [PubMed]
  6. Mizuno, T., Wei, W. H., Eller, L. R. & Sessler, J. L. (2002). J. Am. Chem. Soc. 124, 1134–1135. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Wall, M., Linkletter, B., Williams, D., Lebuis, A. M., Hynes, R. C. & Chin, J. (1999). J. Am. Chem. Soc. 121, 4710–4711.
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812010835/bg2438sup1.cif

e-68-0m443-sup1.cif (24.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812010835/bg2438Isup2.hkl

e-68-0m443-Isup2.hkl (235.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES