Abstract
Translocation of viral DNA inwards and outwards of the capsid of double-stranded DNA bacteriophages occurs through the connector, a key viral structure that is known to interact with DNA. It is shown here that phage phi 29 connector binds both linear and circular double-stranded DNA. However, DNA-mediated protection of phi 29 connectors against Staphylococcus aureus endoprotease V8 digestion suggests that binding to linear DNA is more stable than to circular DNA. Endoprotease V8-protection assays also suggest that the length of the linear DNA required to produce a stable phi 29 connector-DNA interaction is, at least, twice longer than the phi 29 connector channel. This result is confirmed by experiments of phi 29 connector-protection of DNA against DNase I digestion. Furthermore, DNA circularization assays indicate that phi 29 connectors restrain negative supercoiling when bound to linear DNA. This DNA conformational change is not observed upon binding to circular DNA and it could reflect the existence of some left-handed DNA coiling or DNA untwisting inside of the phi 29 connector channel.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bazinet C., King J. The DNA translocating vertex of dsDNA bacteriophage. Annu Rev Microbiol. 1985;39:109–129. doi: 10.1146/annurev.mi.39.100185.000545. [DOI] [PubMed] [Google Scholar]
- Camacho A., Jiménez F., De La Torre J., Carrascosa J. L., Mellado R. P., Vásquez C., Viñuela E., Salas M. Assembly of Bacillus subtilis phage phi29. 1. Mutants in the cistrons coding for the structural proteins. Eur J Biochem. 1977 Feb 15;73(1):39–55. doi: 10.1111/j.1432-1033.1977.tb11290.x. [DOI] [PubMed] [Google Scholar]
- Carazo J. M., Donate L. E., Herranz L., Secilla J. P., Carrascosa J. L. Three-dimensional reconstruction of the connector of bacteriophage phi 29 at 1.8 nm resolution. J Mol Biol. 1986 Dec 20;192(4):853–867. doi: 10.1016/0022-2836(86)90033-1. [DOI] [PubMed] [Google Scholar]
- Carazo J. M., Fujisawa H., Nakasu S., Carrascosa J. L. Bacteriophage T3 gene 8 product oligomer structure. J Ultrastruct Mol Struct Res. 1986 Feb;94(2):105–113. doi: 10.1016/0889-1605(86)90056-x. [DOI] [PubMed] [Google Scholar]
- Carazo J. M., Santisteban A., Carrascosa J. L. Three-dimensional reconstruction of bacteriophage phi 29 neck particles at 2 X 2 nm resolution. J Mol Biol. 1985 May 5;183(1):79–88. doi: 10.1016/0022-2836(85)90282-7. [DOI] [PubMed] [Google Scholar]
- Carrascosa J. L., Carazo J. M., Ibañez C., Santisteban A. Structure of phage phi 29 connector protein assembled in vivo. Virology. 1985 Mar;141(2):190–200. doi: 10.1016/0042-6822(85)90251-x. [DOI] [PubMed] [Google Scholar]
- Donate L. E., Carrascosa J. L. Characterization of a versatile in vitro DNA-packaging system based on hybrid lambda/phi 29 proheads. Virology. 1991 Jun;182(2):534–544. doi: 10.1016/0042-6822(91)90594-2. [DOI] [PubMed] [Google Scholar]
- Donate L. E., Herranz L., Secilla J. P., Carazo J. M., Fujisawa H., Carrascosa J. L. Bacteriophage T3 connector: three-dimensional structure and comparison with other viral head-tail connecting regions. J Mol Biol. 1988 May 5;201(1):91–100. doi: 10.1016/0022-2836(88)90441-x. [DOI] [PubMed] [Google Scholar]
- Donate L. E., Valpuesta J. M., Rocher A., Méndez E., Rojo F., Salas M., Carrascosa J. L. Role of the amino-terminal domain of bacteriophage phi 29 connector in DNA binding and packaging. J Biol Chem. 1992 May 25;267(15):10919–10924. [PubMed] [Google Scholar]
- Driedonks R. A., Engel A., tenHeggeler B., van Driel Gene 20 product of bacteriophage T4 its purification and structure. J Mol Biol. 1981 Nov 15;152(4):641–662. doi: 10.1016/0022-2836(81)90121-2. [DOI] [PubMed] [Google Scholar]
- Earnshaw W. C., Casjens S. R. DNA packaging by the double-stranded DNA bacteriophages. Cell. 1980 Sep;21(2):319–331. doi: 10.1016/0092-8674(80)90468-7. [DOI] [PubMed] [Google Scholar]
- Gamper H. B., Hearst J. E. A topological model for transcription based on unwinding angle analysis of E. coli RNA polymerase binary, initiation and ternary complexes. Cell. 1982 May;29(1):81–90. doi: 10.1016/0092-8674(82)90092-7. [DOI] [PubMed] [Google Scholar]
- Guo P., Peterson C., Anderson D. Prohead and DNA-gp3-dependent ATPase activity of the DNA packaging protein gp16 of bacteriophage phi 29. J Mol Biol. 1987 Sep 20;197(2):229–236. doi: 10.1016/0022-2836(87)90121-5. [DOI] [PubMed] [Google Scholar]
- Hendrix R. W. Symmetry mismatch and DNA packaging in large bacteriophages. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4779–4783. doi: 10.1073/pnas.75.10.4779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herranz L., Bordas J., Towns-Andrews E., Mendez E., Usobiaga P., Carrascosa J. L. Conformational changes in bacteriophage phi 29 connector prevents DNA-binding activity. J Mol Biol. 1990 May 20;213(2):263–273. doi: 10.1016/s0022-2836(05)80189-5. [DOI] [PubMed] [Google Scholar]
- Herranz L., Salas M., Carrascosa J. L. Interaction of the bacteriophage phi 29 connector protein with the viral DNA. Virology. 1986 Nov;155(1):289–292. doi: 10.1016/0042-6822(86)90191-1. [DOI] [PubMed] [Google Scholar]
- Hsiao C. L., Black L. W. Head morphogenesis of bacteriophage T4. III. The role of gene 20 in DNA packaging. Virology. 1978 Nov;91(1):26–38. doi: 10.1016/0042-6822(78)90352-5. [DOI] [PubMed] [Google Scholar]
- Ibáez C., García J. A., Carrascosa J. L., Salas M. Overproduction and purification of the connector protein of Bacillus subtilis phage phi 29. Nucleic Acids Res. 1984 Mar 12;12(5):2351–2365. doi: 10.1093/nar/12.5.2351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kochan J., Carrascosa J. L., Murialdo H. Bacteriophage lambda preconnectors. Purification and structure. J Mol Biol. 1984 Apr 15;174(3):433–447. doi: 10.1016/0022-2836(84)90330-9. [DOI] [PubMed] [Google Scholar]
- Kolb A., Buc H. Is DNA unwound by the cyclic AMP receptor protein? Nucleic Acids Res. 1982 Jan 22;10(2):473–485. doi: 10.1093/nar/10.2.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Murialdo H., Becker A. Head morphogenesis of complex double-stranded deoxyribonucleic acid bacteriophages. Microbiol Rev. 1978 Sep;42(3):529–576. doi: 10.1128/mr.42.3.529-576.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakasu S., Fujisawa H., Minagawa T. Purification of characterization of gene 8 product of bacteriophage T3. Virology. 1985 Jun;143(2):422–434. doi: 10.1016/0042-6822(85)90382-4. [DOI] [PubMed] [Google Scholar]
- Raj A. S., Raj A. Y., Schmieger H. Phage genes involved in the formation generalized transducing particles in Salmonella--Phage P22. Mol Gen Genet. 1974;135(2):175–184. doi: 10.1007/BF00264784. [DOI] [PubMed] [Google Scholar]
- Valpuesta J. M., Fujisawa H., Marco S., Carazo J. M., Carrascosa J. L. Three-dimensional structure of T3 connector purified from overexpressing bacteria. J Mol Biol. 1992 Mar 5;224(1):103–112. doi: 10.1016/0022-2836(92)90579-9. [DOI] [PubMed] [Google Scholar]
- Wang J. C., Peck L. J., Becherer K. DNA supercoiling and its effects on DNA structure and function. Cold Spring Harb Symp Quant Biol. 1983;47(Pt 1):85–91. doi: 10.1101/sqb.1983.047.01.011. [DOI] [PubMed] [Google Scholar]
- White J. H., Gallo R. M., Bauer W. R. Closed circular DNA as a probe for protein-induced structural changes. Trends Biochem Sci. 1992 Jan;17(1):7–12. doi: 10.1016/0968-0004(92)90417-8. [DOI] [PubMed] [Google Scholar]





