Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 24;68(Pt 4):m462–m463. doi: 10.1107/S1600536812011439

Bis(guanidinium) tris­(pyridine-2,6-dicarboxyl­ato-κ3 O 2,N,O 6)zirconate(II) tetra­hydrate

Masoumeh Tabatabaee a,*, Mahnaz Adineh a, Zohreh Derikvand b, Jafar Attar Gharamaleki c
PMCID: PMC3343856  PMID: 22589830

Abstract

In the title complex, (CH6N3)2[Zr(C7H3NO4)3]·4H2O, the ZrIV ion lies on a twofold rotation axes and is coordinated by six O and three N atoms of three tridentate pyridine-2,6-dicarboxyl­ate ligands, forming a slightly distorted tricapped trigonal–prismatic geometry. In the crystal, O—H⋯O and N—H⋯O hydrogen bonds link the components into a three-dimensional network.

Related literature  

For related structures, see: Aghabozorg et al. (2005); Tabatabaee (2010); Tabatabaee et al. (2009, 2011a ,b ,c , 2012); Derikvand et al. (2010); Attar Gharamaleki et al. (2009).graphic file with name e-68-0m462-scheme1.jpg

Experimental  

Crystal data  

  • (CH6N3)2[Zr(C7H3NO4)3]·4H2O

  • M r = 778.77

  • Orthorhombic, Inline graphic

  • a = 17.2444 (9) Å

  • b = 10.8583 (5) Å

  • c = 16.5268 (8) Å

  • V = 3094.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 120 K

  • 0.17 × 0.15 × 0.07 mm

Data collection  

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.884, T max = 0.970

  • 32229 measured reflections

  • 4116 independent reflections

  • 2884 reflections with I > 2σ(I)

  • R int = 0.068

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.146

  • S = 1.07

  • 4116 reflections

  • 223 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL, DIAMOND (Brandenburg, 1999) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812011439/lh5430sup1.cif

e-68-0m462-sup1.cif (23KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011439/lh5430Isup2.hkl

e-68-0m462-Isup2.hkl (201.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3NA⋯O1 0.77 2.23 3.003 (4) 175
N3—H3NB⋯O2Wi 0.86 2.15 2.930 (4) 150
N4—H4NA⋯O2Wi 0.83 2.04 2.818 (4) 156
N4—H4NB⋯O1Wii 0.78 2.06 2.834 (4) 175
N5—H5NA⋯O2 0.88 1.95 2.828 (4) 171
N5—H5NB⋯O3iii 0.79 2.45 3.143 (4) 148
N5—H5NB⋯O4iii 0.79 2.52 3.171 (4) 141
O1W—H1WA⋯O3iv 0.84 2.33 3.041 (3) 143
O1W—H1WA⋯O5iv 0.84 2.38 3.076 (3) 140
O1W—H1WB⋯O6 0.89 1.87 2.761 (3) 175
O2W—H2WA⋯O5iv 0.86 2.07 2.909 (3) 165
O2W—H2WA⋯O6iv 0.86 2.57 3.085 (3) 119
O2W—H2WB⋯O4v 0.94 1.84 2.745 (3) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors wish to express their deepest appreciation to the late Professor Dr. H Aghabozorg who has inspired, advised and assisted during this study.

supplementary crystallographic information

Comment

In recent years, our research group has been interested in the synthesis of proton transfer compounds and study of their behavior with metal ions. We have focused on the proton delivery of polycarboxylic acids. Pyridine-2,6-dicarboxylic acid (pydcH2) is a very important carboxylate derivative and has attracted much interest in coordination chemistry. This is the acid we have utilized widely in our studies (Tabatabaee et al., 2010, 2011a, 2011b, 2011c, 2012; Derikvand et al., 2010; Attar Gharamaleki et al., 2009). In this paper we report the crystal structure of the title complex (I). The ZrIV ion lies on a twofold rotation axis. The asymmetric unit and the symmetry complete cation is shown in Fig. 1. The ZrIV atom is coordinated by three tridentate pydc ligands forming a slightly distorted tricapped trigonal prismatic environment (Fig. 2). The Zr—N distances and Zr—O distances are consistent with those found in (pydaH)2[Zr(pydc)3].5H2O (Aghabozorg et al., 2005). In the crystal, O—H···O and N—H···O hydrogen bonds (Table 1) link the components into a three-dimensional network (Fig. 3).

Experimental

An aqueous solution of ZrOCl2.8H2O, (161 mg, 0.5 mmol) in water (5 ml) was added to a stirring solution of (20 ml) pyridine-2,6-dicarboxylic acid (176 mg, 1 mmol) and guanidine hydrochloride (95 mg, 1 mmol). The reaction mixture was stirred at 298K for 1 h. Colorless crystals of the title compound were obtained after 4 days by slow evaporation of the solvent at room temperature.

Refinement

H atoms bonded to C atoms were placed in calculated positions. The H atoms of water molecules and NH2 groups were located in difference Fourier maps and included in 'as found' positions. All hydrogen atoms were refined in isotropic approximatiom in a riding-model approximation with Uiso(H) parameters equal to 1.2 Ueq(C), 1.5 Ueq(O,N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with ellipsoids drawn at the 50% probability level. The unlabeled atoms are related by the symmetry operator (-x+1, y, -z+1/2). Only the symmetry unique anions and water molecules are shown.

Fig. 2.

Fig. 2.

View of the coordination environment of the ZrIV ion.

Fig. 3.

Fig. 3.

Part of the crystal structure of (I). The donor to acceptor distances of the hydrogen bonds are shown as dotted lines.

Crystal data

(CH6N3)2[Zr(C7H3NO4)3]·4H2O F(000) = 1592
Mr = 778.77 Dx = 1.672 Mg m3
Orthorhombic, Pbcn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2ab Cell parameters from 4151 reflections
a = 17.2444 (9) Å θ = 2.3–26.0°
b = 10.8583 (5) Å µ = 0.45 mm1
c = 16.5268 (8) Å T = 120 K
V = 3094.6 (3) Å3 Prism, colorless
Z = 4 0.17 × 0.15 × 0.07 mm

Data collection

Bruker SMART 1000 CCD diffractometer 4116 independent reflections
Radiation source: normal-focus sealed tube 2884 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.068
ω scans θmax = 29.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 1998) h = −23→23
Tmin = 0.884, Tmax = 0.970 k = −14→14
32229 measured reflections l = −22→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 Hydrogen site location: mixed
wR(F2) = 0.146 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0562P)2 + 8.430P] where P = (Fo2 + 2Fc2)/3
4116 reflections (Δ/σ)max < 0.001
223 parameters Δρmax = 0.87 e Å3
0 restraints Δρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zr1 0.5000 0.72625 (4) 0.2500 0.01631 (13)
O1 0.38154 (13) 0.6592 (2) 0.28200 (14) 0.0245 (5)
O2 0.25204 (15) 0.6675 (3) 0.27362 (17) 0.0349 (6)
O3 0.54360 (12) 0.8668 (2) 0.16530 (13) 0.0226 (5)
O4 0.53142 (16) 1.0370 (2) 0.09047 (17) 0.0362 (6)
O5 0.47334 (14) 0.6443 (2) 0.12914 (14) 0.0236 (5)
O6 0.42065 (17) 0.4926 (2) 0.05627 (15) 0.0354 (6)
N1 0.40034 (15) 0.8418 (2) 0.18731 (16) 0.0214 (5)
N2 0.5000 0.5072 (3) 0.2500 0.0171 (7)
C1 0.32630 (19) 0.8123 (3) 0.20019 (19) 0.0225 (6)
C2 0.2655 (2) 0.8764 (3) 0.1641 (2) 0.0292 (7)
H2A 0.2131 0.8533 0.1731 0.035*
C3 0.2842 (2) 0.9750 (3) 0.1146 (2) 0.0295 (7)
H3A 0.2441 1.0216 0.0898 0.035*
C4 0.3609 (2) 1.0061 (3) 0.1010 (2) 0.0273 (7)
H4A 0.3743 1.0733 0.0670 0.033*
C5 0.41742 (19) 0.9359 (3) 0.13861 (19) 0.0219 (6)
C6 0.31649 (18) 0.7054 (3) 0.25566 (19) 0.0218 (6)
C7 0.50369 (18) 0.9516 (3) 0.12932 (18) 0.0205 (6)
C8 0.47612 (18) 0.4462 (3) 0.18438 (19) 0.0222 (6)
C9 0.4742 (2) 0.3187 (3) 0.1823 (2) 0.0273 (7)
H9A 0.4557 0.2761 0.1360 0.033*
C10 0.5000 0.2551 (4) 0.2500 0.0284 (10)
H10A 0.5000 0.1676 0.2500 0.034*
C11 0.45375 (19) 0.5307 (3) 0.1163 (2) 0.0240 (6)
N3 0.33875 (17) 0.4432 (3) 0.38628 (19) 0.0312 (7)
H3NA 0.3482 0.5016 0.3616 0.047*
H3NB 0.3752 0.4039 0.4112 0.047*
N4 0.25724 (18) 0.3150 (3) 0.45574 (18) 0.0314 (7)
H4NA 0.2971 0.2749 0.4652 0.047*
H4NB 0.2158 0.2885 0.4626 0.047*
N5 0.20814 (17) 0.4727 (3) 0.3776 (2) 0.0364 (8)
H5NA 0.2166 0.5344 0.3439 0.055*
H5NB 0.1654 0.4517 0.3865 0.055*
C12 0.26720 (19) 0.4098 (3) 0.4060 (2) 0.0268 (7)
O1W 0.39648 (14) 0.2667 (2) −0.01609 (15) 0.0279 (5)
H1WA 0.4195 0.2642 −0.0607 0.042*
H1WB 0.4026 0.3377 0.0100 0.042*
O2W 0.58669 (15) 0.2479 (2) 0.01935 (16) 0.0310 (6)
H2WA 0.5768 0.2747 −0.0287 0.047*
H2WB 0.5631 0.1722 0.0319 0.047*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zr1 0.0173 (2) 0.0148 (2) 0.0169 (2) 0.000 −0.00061 (15) 0.000
O1 0.0241 (12) 0.0232 (11) 0.0261 (11) −0.0009 (9) −0.0003 (9) 0.0031 (9)
O2 0.0217 (12) 0.0369 (15) 0.0462 (15) −0.0031 (11) 0.0017 (11) 0.0095 (12)
O3 0.0213 (11) 0.0233 (11) 0.0232 (11) −0.0011 (9) 0.0001 (9) 0.0015 (9)
O4 0.0327 (13) 0.0314 (14) 0.0444 (15) −0.0070 (11) −0.0008 (12) 0.0144 (12)
O5 0.0280 (11) 0.0211 (11) 0.0216 (11) −0.0035 (9) −0.0030 (9) 0.0003 (9)
O6 0.0521 (16) 0.0249 (12) 0.0292 (13) −0.0054 (11) −0.0141 (12) −0.0004 (10)
N1 0.0231 (13) 0.0206 (13) 0.0205 (13) −0.0005 (10) 0.0002 (10) −0.0013 (10)
N2 0.0149 (15) 0.0161 (16) 0.0203 (16) 0.000 0.0013 (13) 0.000
C1 0.0236 (15) 0.0212 (14) 0.0228 (15) 0.0026 (12) −0.0013 (12) 0.0011 (12)
C2 0.0220 (16) 0.0310 (18) 0.0345 (19) 0.0021 (13) −0.0010 (14) 0.0036 (15)
C3 0.0256 (17) 0.0336 (18) 0.0294 (17) 0.0077 (14) −0.0024 (14) 0.0045 (15)
C4 0.0311 (17) 0.0233 (16) 0.0276 (16) 0.0032 (13) −0.0045 (13) 0.0055 (13)
C5 0.0260 (15) 0.0163 (14) 0.0235 (15) 0.0008 (12) −0.0029 (12) −0.0002 (12)
C6 0.0192 (14) 0.0226 (15) 0.0235 (15) −0.0006 (11) 0.0006 (12) −0.0015 (12)
C7 0.0258 (15) 0.0177 (13) 0.0179 (13) −0.0029 (12) −0.0011 (12) −0.0001 (11)
C8 0.0199 (14) 0.0238 (16) 0.0230 (15) −0.0014 (12) 0.0018 (11) −0.0023 (13)
C9 0.0365 (18) 0.0214 (16) 0.0239 (16) −0.0030 (14) −0.0006 (13) −0.0025 (13)
C10 0.040 (3) 0.020 (2) 0.025 (2) 0.000 −0.003 (2) 0.000
C11 0.0244 (15) 0.0240 (16) 0.0235 (15) −0.0002 (12) −0.0027 (12) −0.0022 (12)
N3 0.0240 (14) 0.0321 (16) 0.0375 (17) −0.0040 (12) 0.0005 (12) 0.0113 (13)
N4 0.0269 (15) 0.0324 (16) 0.0348 (16) −0.0033 (12) 0.0041 (12) 0.0093 (13)
N5 0.0208 (14) 0.0441 (19) 0.0444 (19) −0.0014 (13) 0.0018 (13) 0.0160 (15)
C12 0.0275 (17) 0.0300 (17) 0.0228 (16) −0.0002 (14) −0.0002 (12) 0.0000 (13)
O1W 0.0299 (12) 0.0258 (12) 0.0280 (12) −0.0058 (10) 0.0040 (10) −0.0057 (10)
O2W 0.0336 (13) 0.0273 (12) 0.0323 (13) −0.0075 (10) −0.0053 (11) 0.0050 (10)

Geometric parameters (Å, º)

Zr1—O3 2.203 (2) C3—H3A 0.9500
Zr1—O3i 2.203 (2) C4—C5 1.384 (4)
Zr1—O1i 2.232 (2) C4—H4A 0.9500
Zr1—O1 2.232 (2) C5—C7 1.505 (4)
Zr1—O5 2.234 (2) C8—C9 1.384 (5)
Zr1—O5i 2.234 (2) C8—C11 1.503 (5)
Zr1—N1i 2.366 (3) C9—C10 1.388 (4)
Zr1—N1 2.366 (3) C9—H9A 0.9500
Zr1—N2 2.378 (4) C10—C9i 1.388 (4)
O1—C6 1.304 (4) C10—H10A 0.9500
O2—C6 1.222 (4) N3—C12 1.327 (4)
O3—C7 1.294 (4) N3—H3NA 0.7713
O4—C7 1.225 (4) N3—H3NB 0.8647
O5—C11 1.297 (4) N4—C12 1.329 (4)
O6—C11 1.217 (4) N4—H4NA 0.8289
N1—C1 1.333 (4) N4—H4NB 0.7790
N1—C5 1.334 (4) N5—C12 1.312 (4)
N2—C8 1.336 (4) N5—H5NA 0.8832
N2—C8i 1.336 (4) N5—H5NB 0.7861
C1—C2 1.393 (5) O1W—H1WA 0.8370
C1—C6 1.489 (5) O1W—H1WB 0.8899
C2—C3 1.386 (5) O2W—H2WA 0.8620
C2—H2A 0.9500 O2W—H2WB 0.9408
C3—C4 1.382 (5)
O3—Zr1—O3i 92.30 (12) N1—C1—C6 113.2 (3)
O3—Zr1—O1i 76.29 (8) C2—C1—C6 124.6 (3)
O3i—Zr1—O1i 133.53 (8) C3—C2—C1 117.6 (3)
O3—Zr1—O1 133.53 (8) C3—C2—H2A 121.2
O3i—Zr1—O1 76.29 (8) C1—C2—H2A 121.2
O1i—Zr1—O1 141.94 (12) C4—C3—C2 120.5 (3)
O3—Zr1—O5 77.18 (8) C4—C3—H3A 119.8
O3i—Zr1—O5 140.67 (8) C2—C3—H3A 119.8
O1i—Zr1—O5 81.18 (9) C3—C4—C5 117.8 (3)
O1—Zr1—O5 83.89 (9) C3—C4—H4A 121.1
O3—Zr1—O5i 140.67 (8) C5—C4—H4A 121.1
O3i—Zr1—O5i 77.18 (8) N1—C5—C4 122.5 (3)
O1i—Zr1—O5i 83.89 (9) N1—C5—C7 111.5 (3)
O1—Zr1—O5i 81.18 (9) C4—C5—C7 126.0 (3)
O5—Zr1—O5i 133.07 (12) O2—C6—O1 124.9 (3)
O3—Zr1—N1i 70.31 (8) O2—C6—C1 121.0 (3)
O3i—Zr1—N1i 66.58 (8) O1—C6—C1 114.1 (3)
O1i—Zr1—N1i 67.17 (9) O4—C7—O3 124.9 (3)
O1—Zr1—N1i 137.20 (9) O4—C7—C5 121.7 (3)
O5—Zr1—N1i 138.75 (9) O3—C7—C5 113.4 (3)
O5i—Zr1—N1i 70.75 (9) N2—C8—C9 121.6 (3)
O3—Zr1—N1 66.58 (8) N2—C8—C11 112.6 (3)
O3i—Zr1—N1 70.31 (8) C9—C8—C11 125.9 (3)
O1i—Zr1—N1 137.20 (9) C8—C9—C10 118.1 (3)
O1—Zr1—N1 67.17 (9) C8—C9—H9A 121.0
O5—Zr1—N1 70.75 (9) C10—C9—H9A 121.0
O5i—Zr1—N1 138.75 (9) C9—C10—C9i 120.2 (4)
N1i—Zr1—N1 115.98 (13) C9—C10—H10A 119.9
O3—Zr1—N2 133.85 (6) C9i—C10—H10A 119.9
O3i—Zr1—N2 133.85 (6) O6—C11—O5 125.4 (3)
O1i—Zr1—N2 70.97 (6) O6—C11—C8 121.6 (3)
O1—Zr1—N2 70.97 (6) O5—C11—C8 113.1 (3)
O5—Zr1—N2 66.54 (6) C12—N3—H3NA 123.4
O5i—Zr1—N2 66.54 (6) C12—N3—H3NB 115.1
N1i—Zr1—N2 122.01 (6) H3NA—N3—H3NB 120.4
N1—Zr1—N2 122.01 (6) C12—N4—H4NA 114.6
C6—O1—Zr1 125.7 (2) C12—N4—H4NB 119.6
C7—O3—Zr1 127.11 (19) H4NA—N4—H4NB 122.8
C11—O5—Zr1 125.4 (2) C12—N5—H5NA 119.5
C1—N1—C5 119.5 (3) C12—N5—H5NB 120.7
C1—N1—Zr1 119.9 (2) H5NA—N5—H5NB 119.5
C5—N1—Zr1 120.7 (2) N5—C12—N3 119.5 (3)
C8—N2—C8i 120.5 (4) N5—C12—N4 121.6 (3)
C8—N2—Zr1 119.8 (2) N3—C12—N4 118.9 (3)
C8i—N2—Zr1 119.8 (2) H1WA—O1W—H1WB 113.4
N1—C1—C2 122.2 (3) H2WA—O2W—H2WB 114.3
O3—Zr1—O1—C6 −5.4 (3) O3—Zr1—N2—C8i 130.96 (17)
O3i—Zr1—O1—C6 74.6 (2) O3i—Zr1—N2—C8i −49.04 (17)
O1i—Zr1—O1—C6 −138.4 (3) O1i—Zr1—N2—C8i 83.72 (17)
O5—Zr1—O1—C6 −71.2 (3) O1—Zr1—N2—C8i −96.28 (17)
O5i—Zr1—O1—C6 153.4 (3) O5—Zr1—N2—C8i 172.17 (17)
N1i—Zr1—O1—C6 104.6 (3) O5i—Zr1—N2—C8i −7.83 (17)
N1—Zr1—O1—C6 0.5 (2) N1i—Zr1—N2—C8i 38.12 (17)
N2—Zr1—O1—C6 −138.4 (3) N1—Zr1—N2—C8i −141.88 (17)
O3i—Zr1—O3—C7 −59.3 (2) C5—N1—C1—C2 0.3 (5)
O1i—Zr1—O3—C7 166.3 (3) Zr1—N1—C1—C2 −179.3 (2)
O1—Zr1—O3—C7 13.9 (3) C5—N1—C1—C6 179.9 (3)
O5—Zr1—O3—C7 82.4 (2) Zr1—N1—C1—C6 0.4 (4)
O5i—Zr1—O3—C7 −131.8 (2) N1—C1—C2—C3 −1.2 (5)
N1i—Zr1—O3—C7 −123.4 (3) C6—C1—C2—C3 179.2 (3)
N1—Zr1—O3—C7 8.1 (2) C1—C2—C3—C4 1.1 (5)
N2—Zr1—O3—C7 120.7 (2) C2—C3—C4—C5 −0.2 (5)
O3—Zr1—O5—C11 166.3 (3) C1—N1—C5—C4 0.7 (5)
O3i—Zr1—O5—C11 −116.0 (3) Zr1—N1—C5—C4 −179.7 (2)
O1i—Zr1—O5—C11 88.4 (3) C1—N1—C5—C7 −177.9 (3)
O1—Zr1—O5—C11 −56.4 (3) Zr1—N1—C5—C7 1.7 (3)
O5i—Zr1—O5—C11 15.4 (2) C3—C4—C5—N1 −0.7 (5)
N1i—Zr1—O5—C11 127.9 (2) C3—C4—C5—C7 177.7 (3)
N1—Zr1—O5—C11 −124.3 (3) Zr1—O1—C6—O2 179.8 (3)
N2—Zr1—O5—C11 15.4 (2) Zr1—O1—C6—C1 −0.4 (4)
O3—Zr1—N1—C1 175.0 (3) N1—C1—C6—O2 179.8 (3)
O3i—Zr1—N1—C1 −83.4 (2) C2—C1—C6—O2 −0.6 (5)
O1i—Zr1—N1—C1 143.0 (2) N1—C1—C6—O1 0.0 (4)
O1—Zr1—N1—C1 −0.4 (2) C2—C1—C6—O1 179.7 (3)
O5—Zr1—N1—C1 91.0 (2) Zr1—O3—C7—O4 170.7 (2)
O5i—Zr1—N1—C1 −43.3 (3) Zr1—O3—C7—C5 −9.9 (4)
N1i—Zr1—N1—C1 −133.3 (3) N1—C5—C7—O4 −176.1 (3)
N2—Zr1—N1—C1 46.7 (3) C4—C5—C7—O4 5.4 (5)
O3—Zr1—N1—C5 −4.5 (2) N1—C5—C7—O3 4.5 (4)
O3i—Zr1—N1—C5 97.1 (2) C4—C5—C7—O3 −174.0 (3)
O1i—Zr1—N1—C5 −36.6 (3) C8i—N2—C8—C9 0.9 (2)
O1—Zr1—N1—C5 −180.0 (3) Zr1—N2—C8—C9 −179.1 (2)
O5—Zr1—N1—C5 −88.5 (2) C8i—N2—C8—C11 −178.4 (3)
O5i—Zr1—N1—C5 137.1 (2) Zr1—N2—C8—C11 1.6 (3)
N1i—Zr1—N1—C5 47.2 (2) N2—C8—C9—C10 −1.8 (5)
N2—Zr1—N1—C5 −132.8 (2) C11—C8—C9—C10 177.4 (3)
O3—Zr1—N2—C8 −49.04 (17) C8—C9—C10—C9i 0.9 (2)
O3i—Zr1—N2—C8 130.96 (17) Zr1—O5—C11—O6 160.2 (3)
O1i—Zr1—N2—C8 −96.28 (17) Zr1—O5—C11—C8 −19.8 (4)
O1—Zr1—N2—C8 83.72 (17) N2—C8—C11—O6 −169.6 (3)
O5—Zr1—N2—C8 −7.83 (17) C9—C8—C11—O6 11.1 (5)
O5i—Zr1—N2—C8 172.17 (17) N2—C8—C11—O5 10.4 (4)
N1i—Zr1—N2—C8 −141.88 (17) C9—C8—C11—O5 −168.9 (3)
N1—Zr1—N2—C8 38.12 (17)

Symmetry code: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3NA···O1 0.77 2.23 3.003 (4) 175
N3—H3NB···O2Wi 0.86 2.15 2.930 (4) 150
N4—H4NA···O2Wi 0.83 2.04 2.818 (4) 156
N4—H4NB···O1Wii 0.78 2.06 2.834 (4) 175
N5—H5NA···O2 0.88 1.95 2.828 (4) 171
N5—H5NB···O3iii 0.79 2.45 3.143 (4) 148
N5—H5NB···O4iii 0.79 2.52 3.171 (4) 141
O1W—H1WA···O3iv 0.84 2.33 3.041 (3) 143
O1W—H1WA···O5iv 0.84 2.38 3.076 (3) 140
O1W—H1WB···O6 0.89 1.87 2.761 (3) 175
O2W—H2WA···O5iv 0.86 2.07 2.909 (3) 165
O2W—H2WA···O6iv 0.86 2.57 3.085 (3) 119
O2W—H2WB···O4v 0.94 1.84 2.745 (3) 160

Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+1/2, −y+1/2, z+1/2; (iii) x−1/2, y−1/2, −z+1/2; (iv) −x+1, −y+1, −z; (v) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5430).

References

  1. Aghabozorg, H., Moghimi, A., Manteghi, F. & Ranjbar, M. (2005). Z. Anorg. Allg. Chem. 631, 909–913.
  2. Attar Gharamaleki, J., Aghabozorg, H., Derikvand, Z. & Yousefi, M. (2009). Acta Cryst. E65, m824–m825. [DOI] [PMC free article] [PubMed]
  3. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Bruker (1998). SAINT, SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Derikvand, Z., Talei, G. R., Aghabozorg, H., Olmstead, M. M., Azadbakht, A., Nemati, A. & Attar Gharamaleki, J. (2010). Chin. J. Chem. 28, 2167–2173.
  6. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Tabatabaee, M. (2010). Acta Cryst. E66, m647–m648. [DOI] [PMC free article] [PubMed]
  9. Tabatabaee, M., Abbasi, F., Kukovec, B. M. & Nasirizadeh, N. (2011b). J. Coord. Chem. 64, 1718–1728.
  10. Tabatabaee, M., Aghabozorg, H., Attar Gharamaleki, J. & Sharif, M. A. (2009). Acta Cryst. E65, m473–m474. [DOI] [PMC free article] [PubMed]
  11. Tabatabaee, M., Kukovec, B. M. & Kazeroonizadeh, M. (2011a). Polyhedron, 30, 1114–1119.
  12. Tabatabaee, M., Tahriri, M., Tahriri, M., Dušek, M. & Fejfarová, K. (2011c). Acta Cryst. E67, m769–m770. [DOI] [PMC free article] [PubMed]
  13. Tabatabaee, M., Tahriri, M., Tahriri, M., Ozawa, Y., Neumuller, B., Fujioka, H. & Toriumi, K. (2012). Polyhedron, 33, 336–340.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812011439/lh5430sup1.cif

e-68-0m462-sup1.cif (23KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011439/lh5430Isup2.hkl

e-68-0m462-Isup2.hkl (201.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES