Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 24;68(Pt 4):m479. doi: 10.1107/S1600536812011907

(Di-2-pyridyl­amine-κ2 N 2,N 2′)diiodidoplatinum(II)

Kwang Ha a,*
PMCID: PMC3343866  PMID: 22589840

Abstract

The PtII ion in the title complex, [PtI2(C10H9N3)], is four-coordinated in a distorted square-planar environment defined by the two pyridine N atoms of the chelating di-2-pyridyl­amine (dpa) ligand and by two I anions. The dpa ligand is not planar, the dihedral angle between the pyridine rings being 52.8 (3)°. Pairs of complex mol­ecules are assembled through inter­molecular N—H⋯I hydrogen bonds, forming a dimer-type species. The complexes are stacked in columns along the b axis and display several inter­molecular π–π inter­actions between the pyridine rings, with a shortest ring centroid–centroid distance of 3.997 (5) Å.

Related literature  

For the crystal structure of the related chlorido PtII complex [PtCl2(dpa)], see: Li & Liu (2004); Tu et al. (2004); Zhang et al. (2006).graphic file with name e-68-0m479-scheme1.jpg

Experimental  

Crystal data  

  • [PtI2(C10H9N3)]

  • M r = 620.09

  • Monoclinic, Inline graphic

  • a = 8.2354 (6) Å

  • b = 9.7940 (7) Å

  • c = 16.4702 (12) Å

  • β = 102.148 (1)°

  • V = 1298.70 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 15.54 mm−1

  • T = 200 K

  • 0.16 × 0.12 × 0.08 mm

Data collection  

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.753, T max = 1.000

  • 7763 measured reflections

  • 2527 independent reflections

  • 2206 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.077

  • S = 1.07

  • 2527 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 1.47 e Å−3

  • Δρmin = −1.31 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812011907/wm2603sup1.cif

e-68-0m479-sup1.cif (20.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011907/wm2603Isup2.hkl

e-68-0m479-Isup2.hkl (124.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Pt1—N1 2.033 (7)
Pt1—N3 2.055 (6)
Pt1—I2 2.5675 (7)
Pt1—I1 2.5934 (7)
N1—Pt1—N3 85.9 (3)
I2—Pt1—I1 90.85 (2)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯I1i 0.92 2.82 3.607 (7) 144

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011–0030747).

supplementary crystallographic information

Comment

The title complex, [PtI2(dpa)] (dpa = di-2-pyridylamine, C10H9N3), is closely related with the previously reported analogous chlorido PtII complex [PtCl2(dpa)] (Li & Liu, 2004; Tu et al., 2004; Zhang et al., 2006). The PtII ion is four-coordinated in a distorted square-planar environment by the two pyridine N atoms of the chelating dpa ligand and two I- anions (Fig. 1). In the crystal, the dpa ligand is not planar. The dihedral angle between the least-squares planes of the pyridine rings is 52.8 (3)°. The two Pt—N and the two Pt—I bond lengths, respectively, are nearly equivalent (Table 1). Two complex molecules are assembled through intermolecular N—H···I hydrogen bonds, forming a dimer-type species (Fig. 2 and Table 2). The complexes are stacked in columns along the b axis and display several intermolecular π—π interactions between the pyridine rings, with a shortest ring centroid to centroid distance of 3.997 (5) Å.

Experimental

To a solution of K2PtCl4 (0.2082 g, 0.502 mmol) in H2O (20 ml) and MeOH (10 ml) were added KI (0.7022 g, 4.230 mmol) and di-2-pyridylamine (0.0896 g, 0.523 mmol) and stirred for 3 h at room temperature. The formed precipitate was separated by filtration and washed with H2O and MeOH, and dried at 373 K, to give a yellow powder (0.2614 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN/acetone solution.

Refinement

Carbon-bound H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The nitrogen-bound H atom was located from Fourier difference maps and then allowed to ride on its parent atom in the final cycles of refinement with N—H = 0.92 Å and Uiso(H) = 1.5 Ueq(N). The highest peak (1.47 e Å-3) and the deepest hole (-1.31 e Å-3) in the difference Fourier map are located 0.56 Å and 0.67 Å from the atoms Pt1 and I1, respectively.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title complex, with displacement ellipsoids drawn at the 50% probability level for all non-H atoms.

Fig. 2.

Fig. 2.

A view of the unit-cell content of the title complex. Intermolecular N—H···I hydrogen-bonding interactions are drawn with dashed lines.

Crystal data

[PtI2(C10H9N3)] F(000) = 1096
Mr = 620.09 Dx = 3.171 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4677 reflections
a = 8.2354 (6) Å θ = 2.4–26.0°
b = 9.7940 (7) Å µ = 15.54 mm1
c = 16.4702 (12) Å T = 200 K
β = 102.148 (1)° Block, yellow
V = 1298.70 (16) Å3 0.16 × 0.12 × 0.08 mm
Z = 4

Data collection

Bruker SMART 1000 CCD diffractometer 2527 independent reflections
Radiation source: fine-focus sealed tube 2206 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.028
φ and ω scans θmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −10→9
Tmin = 0.753, Tmax = 1.000 k = −12→9
7763 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0328P)2 + 7.7728P] where P = (Fo2 + 2Fc2)/3
2527 reflections (Δ/σ)max < 0.001
145 parameters Δρmax = 1.47 e Å3
0 restraints Δρmin = −1.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pt1 0.06711 (4) 0.84628 (3) 0.151994 (17) 0.02326 (11)
I1 0.24006 (8) 1.04400 (6) 0.23202 (3) 0.04146 (18)
I2 −0.14376 (8) 0.86265 (7) 0.24634 (4) 0.04368 (18)
N1 0.2236 (8) 0.8338 (7) 0.0719 (4) 0.0272 (15)
N2 −0.0138 (9) 0.8279 (7) −0.0353 (4) 0.0289 (15)
H2N −0.0582 0.8189 −0.0911 0.043*
N3 −0.0752 (8) 0.7046 (7) 0.0769 (4) 0.0239 (14)
C1 0.3928 (11) 0.8266 (8) 0.0968 (6) 0.0326 (19)
H1 0.4403 0.8184 0.1543 0.039*
C2 0.4957 (11) 0.8309 (9) 0.0416 (6) 0.035 (2)
H2 0.6126 0.8244 0.0605 0.042*
C3 0.4278 (12) 0.8447 (8) −0.0417 (6) 0.038 (2)
H3 0.4979 0.8505 −0.0806 0.046*
C4 0.2564 (11) 0.8501 (8) −0.0688 (5) 0.0313 (19)
H4 0.2077 0.8616 −0.1260 0.038*
C5 0.1575 (10) 0.8384 (8) −0.0103 (5) 0.0242 (17)
C6 −0.0991 (9) 0.7231 (8) −0.0054 (5) 0.0232 (16)
C7 −0.2111 (11) 0.6449 (9) −0.0613 (5) 0.035 (2)
H7 −0.2327 0.6645 −0.1191 0.041*
C8 −0.2908 (11) 0.5374 (9) −0.0309 (6) 0.037 (2)
H8 −0.3666 0.4810 −0.0677 0.044*
C9 −0.2582 (11) 0.5140 (9) 0.0534 (6) 0.038 (2)
H9 −0.3101 0.4400 0.0753 0.046*
C10 −0.1502 (10) 0.5980 (9) 0.1058 (6) 0.0315 (19)
H10 −0.1278 0.5807 0.1638 0.038*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pt1 0.02847 (18) 0.02197 (18) 0.01700 (16) −0.00104 (12) −0.00054 (12) 0.00125 (12)
I1 0.0546 (4) 0.0355 (3) 0.0275 (3) −0.0086 (3) −0.0067 (3) −0.0009 (3)
I2 0.0488 (4) 0.0540 (4) 0.0301 (3) 0.0015 (3) 0.0125 (3) −0.0015 (3)
N1 0.031 (4) 0.023 (4) 0.024 (3) −0.001 (3) −0.001 (3) 0.001 (3)
N2 0.033 (4) 0.031 (4) 0.020 (3) −0.004 (3) −0.001 (3) 0.001 (3)
N3 0.023 (3) 0.023 (3) 0.024 (3) 0.003 (3) 0.002 (3) 0.002 (3)
C1 0.034 (5) 0.026 (4) 0.036 (5) −0.002 (4) 0.002 (4) 0.000 (4)
C2 0.030 (5) 0.033 (5) 0.043 (5) 0.000 (4) 0.006 (4) −0.002 (4)
C3 0.043 (5) 0.023 (5) 0.053 (6) 0.000 (4) 0.021 (5) 0.003 (4)
C4 0.039 (5) 0.030 (5) 0.026 (4) 0.000 (4) 0.011 (4) −0.002 (4)
C5 0.034 (4) 0.017 (4) 0.023 (4) −0.001 (3) 0.007 (3) −0.002 (3)
C6 0.025 (4) 0.016 (4) 0.026 (4) 0.002 (3) 0.000 (3) 0.001 (3)
C7 0.036 (5) 0.039 (5) 0.027 (4) −0.002 (4) 0.003 (4) −0.004 (4)
C8 0.033 (5) 0.026 (5) 0.048 (6) −0.005 (4) 0.000 (4) −0.012 (4)
C9 0.042 (5) 0.023 (4) 0.048 (6) −0.011 (4) 0.008 (4) −0.005 (4)
C10 0.035 (5) 0.023 (4) 0.036 (5) 0.000 (4) 0.005 (4) 0.006 (4)

Geometric parameters (Å, º)

Pt1—N1 2.033 (7) C2—H2 0.9500
Pt1—N3 2.055 (6) C3—C4 1.390 (13)
Pt1—I2 2.5675 (7) C3—H3 0.9500
Pt1—I1 2.5934 (7) C4—C5 1.391 (12)
N1—C5 1.349 (10) C4—H4 0.9500
N1—C1 1.369 (11) C6—C7 1.389 (11)
N2—C5 1.388 (10) C7—C8 1.388 (13)
N2—C6 1.390 (10) C7—H7 0.9500
N2—H2N 0.9196 C8—C9 1.377 (13)
N3—C6 1.340 (10) C8—H8 0.9500
N3—C10 1.349 (10) C9—C10 1.375 (12)
C1—C2 1.368 (13) C9—H9 0.9500
C1—H1 0.9500 C10—H10 0.9500
C2—C3 1.374 (13)
N1—Pt1—N3 85.9 (3) C4—C3—H3 120.1
N1—Pt1—I2 176.88 (18) C3—C4—C5 118.6 (8)
N3—Pt1—I2 91.94 (18) C3—C4—H4 120.7
N1—Pt1—I1 91.11 (18) C5—C4—H4 120.7
N3—Pt1—I1 173.33 (18) N1—C5—N2 117.7 (7)
I2—Pt1—I1 90.85 (2) N1—C5—C4 121.7 (8)
C5—N1—C1 118.2 (7) N2—C5—C4 120.5 (7)
C5—N1—Pt1 118.2 (5) N3—C6—C7 122.1 (7)
C1—N1—Pt1 123.6 (6) N3—C6—N2 118.7 (7)
C5—N2—C6 120.5 (6) C7—C6—N2 119.1 (7)
C5—N2—H2N 117.9 C8—C7—C6 118.5 (8)
C6—N2—H2N 99.2 C8—C7—H7 120.7
C6—N3—C10 118.8 (7) C6—C7—H7 120.7
C6—N3—Pt1 117.5 (5) C9—C8—C7 118.9 (8)
C10—N3—Pt1 123.7 (6) C9—C8—H8 120.6
C2—C1—N1 122.2 (8) C7—C8—H8 120.6
C2—C1—H1 118.9 C10—C9—C8 119.8 (8)
N1—C1—H1 118.9 C10—C9—H9 120.1
C1—C2—C3 119.2 (8) C8—C9—H9 120.1
C1—C2—H2 120.4 N3—C10—C9 121.7 (8)
C3—C2—H2 120.4 N3—C10—H10 119.2
C2—C3—C4 119.7 (9) C9—C10—H10 119.2
C2—C3—H3 120.1
N3—Pt1—N1—C5 46.4 (6) C6—N2—C5—N1 −50.2 (10)
I1—Pt1—N1—C5 −127.7 (6) C6—N2—C5—C4 128.4 (8)
N3—Pt1—N1—C1 −136.3 (6) C3—C4—C5—N1 5.8 (12)
I1—Pt1—N1—C1 49.6 (6) C3—C4—C5—N2 −172.7 (7)
N1—Pt1—N3—C6 −44.0 (6) C10—N3—C6—C7 6.6 (12)
I2—Pt1—N3—C6 133.8 (5) Pt1—N3—C6—C7 −170.9 (6)
N1—Pt1—N3—C10 138.6 (7) C10—N3—C6—N2 −176.1 (7)
I2—Pt1—N3—C10 −43.6 (6) Pt1—N3—C6—N2 6.4 (9)
C5—N1—C1—C2 3.4 (12) C5—N2—C6—N3 52.8 (10)
Pt1—N1—C1—C2 −173.9 (6) C5—N2—C6—C7 −129.9 (8)
N1—C1—C2—C3 0.9 (13) N3—C6—C7—C8 −5.1 (13)
C1—C2—C3—C4 −1.9 (13) N2—C6—C7—C8 177.6 (8)
C2—C3—C4—C5 −1.3 (12) C6—C7—C8—C9 1.1 (13)
C1—N1—C5—N2 171.8 (7) C7—C8—C9—C10 1.1 (14)
Pt1—N1—C5—N2 −10.8 (9) C6—N3—C10—C9 −4.2 (12)
C1—N1—C5—C4 −6.7 (11) Pt1—N3—C10—C9 173.1 (7)
Pt1—N1—C5—C4 170.7 (6) C8—C9—C10—N3 0.5 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2N···I1i 0.92 2.82 3.607 (7) 144

Symmetry code: (i) −x, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2603).

References

  1. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Li, D. & Liu, D. (2004). Cryst. Res. Technol. 39, 359–362.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  6. Tu, C., Wu, X., Liu, Q., Wang, X., Xu, Q. & Guo, Z. (2004). Inorg. Chim. Acta, 357, 95–102.
  7. Zhang, F., Prokopchuk, E. M., Broczkowski, M. E., Jennings, M. C. & Puddephatt, R. J. (2006). Organometallics, 25, 1583–1591.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812011907/wm2603sup1.cif

e-68-0m479-sup1.cif (20.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812011907/wm2603Isup2.hkl

e-68-0m479-Isup2.hkl (124.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES