Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 28;68(Pt 4):m494–m495. doi: 10.1107/S160053681201238X

cis-(Nitrato-κ2 O,O′)(2,5,5,7,9,12,12,14-octa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4 N,N′,N′′,N′′′)cadmium nitrate hemihydrate

Tapashi G Roy a,, Saroj K S Hazari a, Babul Chandra Nath a, Seik Weng Ng b,c, Edward R T Tiekink b,*
PMCID: PMC3343882  PMID: 22589850

Abstract

The CdII atom in the title complex, [Cd(NO3)(C18H40N4)]NO3·0.5H2O, is coordinated within a cis-N4O2 donor set provided by the tetra­dentate macrocyclic ligand and two O atoms of a nitrate anion; the coordination geometry is distorted octa­hedral. The lattice water mol­ecule is located on a twofold rotation axis. N—H⋯O hydrogen bonds and weak C—H⋯O inter­actions link the complex cations into a supra­molecular layer in the bc plane. Layers are connected by O—H⋯O hydrogen bonds between the lattice water mol­ecule and the non-coordinating nitrate anion, as well as by weak C—H⋯O contacts.

Related literature  

For background to macrocyclic complexes, see: Hazari et al. (2008). For the crystal structure of the anhydrous form of the title complex, see: Hazari et al. (2010). For the synthesis of the macrocyclic ligand, see: Bembi et al. (1989).graphic file with name e-68-0m494-scheme1.jpg

Experimental  

Crystal data  

  • [Cd(NO3)(C18H40N4)]NO3·0.5H2O

  • M r = 557.98

  • Monoclinic, Inline graphic

  • a = 18.4312 (4) Å

  • b = 11.3595 (2) Å

  • c = 25.1662 (6) Å

  • β = 111.782 (3)°

  • V = 4892.8 (2) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 7.55 mm−1

  • T = 100 K

  • 0.15 × 0.15 × 0.15 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.738, T max = 1.000

  • 8065 measured reflections

  • 4713 independent reflections

  • 4467 reflections with I > 2σ(I)

  • R int = 0.019

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.078

  • S = 1.06

  • 4713 reflections

  • 289 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.63 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681201238X/xu5483sup1.cif

e-68-0m494-sup1.cif (27.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201238X/xu5483Isup2.hkl

e-68-0m494-Isup2.hkl (231KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cd—O1 2.4562 (19)
Cd—O2 2.404 (2)
Cd—N1 2.306 (2)
Cd—N2 2.307 (2)
Cd—N3 2.303 (2)
Cd—N4 2.312 (2)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1w⋯O5 0.85 (1) 2.04 (2) 2.836 (3) 156 (5)
N1—H1n⋯O1i 0.88 2.42 3.242 (3) 155
N2—H2n⋯O4 0.88 2.30 3.133 (4) 157
N4—H4n⋯O5 0.88 2.11 2.991 (3) 175
C5—H5B⋯O6ii 0.98 2.58 3.539 (5) 168
C11—H11⋯O4iii 1.00 2.44 3.358 (3) 152
C9—H9B⋯O1wiv 0.98 2.51 3.451 (4) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors are grateful to the Ministry of National Science, Information and Communication Technology (NSICT), Bangladesh, for a research fellowship to BCN. The authors also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (grant No. UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

In continuation of on-going studies of the synthesis, characterization and biological activities of substituted tetraazamacrocyclic ligands and their metal complexes (Hazari et al., 2008), attention was directed to cadmium complexes (Hazari et al., 2010). In that study, the title complex was investigated in its anhydrous form. Recently, it was isolated as a hemihydrate (I). Herein, we describe the crystal structure of (I).

In cation in (I), Fig. 1, the CdII atom exists within a cis-N4O2 donor set defined by the four nitrogen atoms of the macrocyclic ligand and two nitrate-O atoms, Table 1. The coordination geometry is based on an octahedron, but with significant distortions owing in part to the restricted bite angle of the nitrate ligand as manifested in the O1—Cd—O2 angle of 52.80 (7)°. A more regular geometry was found in the anhydrous form of the complex (Hazari et al., 2010). The N—H atoms are orientated oppositely going around the macrocyclic ring. The non-coordinating nitrate anion straddles one side of the cation forming two N—H···O hydrogen bonds and an eight-membered {···ONO···HNCdNH} synthon. The formation of N—H···O hydrogen bonds between a third amine-H and an oxygen atom of the coordinated nitrate ligand leads to four-ion aggregates. These are linked into a supramolecular layer in the bc plane via C—H···O interactions involving the non-coordinating nitrate anion, Fig. 2 and Table 2. The water molecules link layers in the a direction forming O—H···O hydrogen bonds with the O5 atom of the non-coordinating nitrate anion and C—H···O interactions, Fig. 3 and Table 2.

Experimental

The macrocyclic ligand, 3,10-C-meso-2,5,5,7,9,12,12,14-octamethyl-1,4,8,11-tetraazacyclotetradecane (0.312 g, 1.0 mmol), prepared in accord with the literature procedure (Bembi et al., 1989), was dissolved in methanol (20 ml) in a round bottomed flask. Cadmium(II) nitrate hexahydrate (0.344 g, 1.0 mmol) in methanol (20 ml) was added drop wise to the round bottom flask with continuous stirring The mixture was heated for about 30 min. on a steam bath to ensure the completion of the reaction and was then filtered. After 48 h, the white crystalline product that formed from the filtrate was filtered off, washed with methanol followed by diethylether and dried in a desiccator over silica gel. Yield 85%. M.pt: 515–518 K. Anal. Calc. for. C18H41CdN6O6.5 C, 38.75; H, 7.41; N, 15.06; Cd, 20.15%. Found: C, 38.85; H, 7.33; N, 15.75; Cd, 20.35%. FT—IR (KBr, cm-1) 3200 ν(N—H), 2980 ν(C—H), 1371 ν(CH3), 1178 ν(C—C), 520 ν(Cd—N), 1381, 1460, 1275, 730, 820 ν(NO3).

Refinement

The N– and C-bound H-atoms were placed in calculated positions (N—H = 0.88 Å and C—H = 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2-1.5Ueq(N,C). The O—H atom was located from a difference map and refined with O—H = 0.84±0.01 Å, and with Uiso(H)= 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the cation in (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the supramolecular layer in the bc plane in (I). The N—H···O hydrogen bonds and C—H···O interactions are shown as blue and brown dashed lines, respectively.

Fig. 3.

Fig. 3.

A view of the unit-cell contents in projection down the c axis in (I). The O—H···O, N—H···O hydrogen bonds and C—H···O interactions are shown as orange, blue and brown dashed lines, respectively.

Crystal data

[Cd(NO3)(C18H40N4)]NO3·0.5H2O F(000) = 2328
Mr = 557.98 Dx = 1.515 Mg m3
Monoclinic, C2/c Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -C 2yc Cell parameters from 4995 reflections
a = 18.4312 (4) Å θ = 3.8–74.2°
b = 11.3595 (2) Å µ = 7.55 mm1
c = 25.1662 (6) Å T = 100 K
β = 111.782 (3)° Block, colourless
V = 4892.8 (2) Å3 0.15 × 0.15 × 0.15 mm
Z = 8

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 4713 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 4467 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.019
Detector resolution: 10.4041 pixels mm-1 θmax = 72.5°, θmin = 3.8°
ω scan h = −22→22
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −13→10
Tmin = 0.738, Tmax = 1.000 l = −26→30
8065 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0464P)2 + 5.776P] where P = (Fo2 + 2Fc2)/3
4713 reflections (Δ/σ)max = 0.003
289 parameters Δρmax = 0.81 e Å3
1 restraint Δρmin = −0.63 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd 0.197738 (9) 0.571407 (14) 0.583635 (7) 0.01711 (7)
O1 0.14876 (11) 0.69017 (17) 0.49587 (8) 0.0267 (4)
O2 0.09653 (11) 0.51918 (19) 0.49425 (8) 0.0303 (4)
O3 0.05888 (12) 0.6264 (2) 0.41718 (8) 0.0349 (5)
O4 0.30600 (16) 0.5939 (2) 0.78128 (12) 0.0541 (7)
O5 0.36324 (14) 0.4804 (2) 0.74149 (9) 0.0411 (5)
O6 0.42998 (16) 0.5642 (3) 0.82134 (12) 0.0625 (9)
O1w 0.5000 0.3546 (3) 0.7500 0.0546 (10)
H1w 0.468 (2) 0.400 (3) 0.757 (2) 0.071 (15)*
N1 0.31753 (12) 0.59274 (19) 0.57539 (9) 0.0180 (4)
H1n 0.3114 0.6462 0.5488 0.022*
N2 0.26080 (13) 0.69852 (18) 0.65796 (9) 0.0204 (4)
H2n 0.2802 0.6540 0.6886 0.024*
N3 0.10838 (12) 0.5348 (2) 0.62575 (9) 0.0201 (4)
H3n 0.0670 0.5039 0.5991 0.024*
N4 0.24524 (12) 0.39622 (19) 0.63040 (9) 0.0185 (4)
H4n 0.2805 0.4164 0.6638 0.022*
N5 0.10019 (11) 0.6129 (2) 0.46812 (9) 0.0201 (4)
N6 0.36913 (15) 0.5470 (2) 0.78257 (10) 0.0305 (5)
C1 0.37042 (15) 0.6450 (2) 0.63004 (11) 0.0224 (5)
H1A 0.4184 0.6743 0.6255 0.027*
H1B 0.3858 0.5841 0.6603 0.027*
C2 0.32955 (15) 0.7467 (2) 0.64762 (11) 0.0240 (5)
H2A 0.3101 0.8032 0.6149 0.029*
C3 0.38695 (18) 0.8119 (3) 0.69901 (13) 0.0349 (7)
H3A 0.3599 0.8767 0.7096 0.052*
H3B 0.4298 0.8434 0.6891 0.052*
H3C 0.4080 0.7574 0.7313 0.052*
C4 0.20833 (16) 0.7847 (2) 0.67095 (12) 0.0250 (5)
H4A 0.2421 0.8293 0.7055 0.030*
C5 0.17717 (18) 0.8748 (3) 0.62320 (13) 0.0304 (6)
H5A 0.2209 0.9107 0.6159 0.046*
H5B 0.1483 0.9359 0.6345 0.046*
H5C 0.1423 0.8358 0.5884 0.046*
C6 0.14814 (16) 0.7182 (2) 0.68874 (12) 0.0258 (6)
H6A 0.1235 0.7779 0.7053 0.031*
H6B 0.1786 0.6658 0.7206 0.031*
C7 0.08049 (16) 0.6424 (2) 0.64788 (12) 0.0247 (5)
C8 0.02921 (17) 0.7092 (3) 0.59449 (13) 0.0312 (6)
H8A −0.0124 0.6573 0.5703 0.047*
H8B 0.0611 0.7354 0.5731 0.047*
H8C 0.0060 0.7778 0.6058 0.047*
C9 0.02975 (18) 0.6059 (3) 0.68196 (14) 0.0318 (6)
H9A −0.0140 0.5574 0.6577 0.048*
H9B 0.0095 0.6764 0.6941 0.048*
H9C 0.0615 0.5606 0.7157 0.048*
C10 0.14391 (16) 0.4404 (2) 0.66829 (12) 0.0226 (5)
H10A 0.1034 0.4060 0.6807 0.027*
H10B 0.1851 0.4748 0.7023 0.027*
C11 0.17965 (15) 0.3427 (2) 0.64345 (11) 0.0215 (5)
H11 0.2019 0.2813 0.6736 0.026*
C12 0.11974 (15) 0.2840 (2) 0.59113 (12) 0.0251 (5)
H12A 0.1453 0.2224 0.5771 0.038*
H12B 0.0970 0.3429 0.5611 0.038*
H12C 0.0783 0.2489 0.6016 0.038*
C13 0.28665 (14) 0.3164 (2) 0.60372 (11) 0.0203 (5)
H13 0.2493 0.2937 0.5648 0.024*
C14 0.31561 (16) 0.2039 (2) 0.63891 (12) 0.0263 (6)
H14A 0.2713 0.1628 0.6431 0.039*
H14B 0.3537 0.2245 0.6768 0.039*
H14C 0.3404 0.1524 0.6193 0.039*
C15 0.35667 (14) 0.3792 (2) 0.59731 (11) 0.0223 (5)
H15A 0.3872 0.3186 0.5864 0.027*
H15B 0.3901 0.4077 0.6358 0.027*
C16 0.34558 (14) 0.4833 (2) 0.55567 (11) 0.0211 (5)
C17 0.28420 (16) 0.4545 (2) 0.49697 (11) 0.0243 (5)
H17A 0.2781 0.5218 0.4713 0.037*
H17B 0.2342 0.4378 0.5008 0.037*
H17C 0.3009 0.3854 0.4811 0.037*
C18 0.42393 (15) 0.5078 (3) 0.54909 (13) 0.0272 (6)
H18A 0.4177 0.5737 0.5226 0.041*
H18B 0.4404 0.4375 0.5340 0.041*
H18C 0.4636 0.5277 0.5865 0.041*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd 0.01787 (10) 0.01742 (11) 0.01620 (11) 0.00284 (6) 0.00652 (7) −0.00031 (6)
O1 0.0250 (9) 0.0259 (10) 0.0247 (10) 0.0008 (8) 0.0042 (8) 0.0014 (8)
O2 0.0318 (10) 0.0334 (11) 0.0253 (10) −0.0033 (9) 0.0101 (8) 0.0040 (8)
O3 0.0285 (10) 0.0479 (13) 0.0194 (10) 0.0028 (9) −0.0014 (8) 0.0061 (9)
O4 0.0538 (16) 0.0466 (14) 0.0562 (17) 0.0203 (12) 0.0135 (13) −0.0026 (13)
O5 0.0483 (13) 0.0455 (14) 0.0239 (11) −0.0074 (11) 0.0067 (9) −0.0056 (10)
O6 0.0405 (14) 0.099 (3) 0.0364 (14) −0.0271 (14) 0.0015 (11) −0.0104 (14)
O1w 0.063 (2) 0.0305 (18) 0.089 (3) 0.000 0.051 (2) 0.000
N1 0.0179 (10) 0.0188 (10) 0.0172 (10) 0.0034 (8) 0.0064 (8) 0.0007 (8)
N2 0.0268 (11) 0.0164 (10) 0.0186 (10) 0.0009 (9) 0.0092 (8) −0.0017 (8)
N3 0.0202 (10) 0.0212 (10) 0.0204 (10) 0.0033 (9) 0.0094 (8) −0.0015 (9)
N4 0.0186 (9) 0.0174 (10) 0.0194 (10) 0.0014 (8) 0.0069 (8) −0.0012 (8)
N5 0.0128 (9) 0.0288 (12) 0.0185 (10) 0.0050 (9) 0.0055 (8) 0.0030 (9)
N6 0.0420 (14) 0.0243 (12) 0.0213 (12) −0.0032 (11) 0.0071 (10) 0.0054 (10)
C1 0.0210 (12) 0.0241 (13) 0.0205 (12) −0.0023 (10) 0.0058 (10) −0.0018 (10)
C2 0.0281 (13) 0.0222 (13) 0.0225 (12) −0.0039 (11) 0.0102 (10) −0.0040 (10)
C3 0.0395 (16) 0.0367 (17) 0.0288 (15) −0.0147 (13) 0.0129 (13) −0.0109 (13)
C4 0.0350 (14) 0.0207 (13) 0.0240 (13) 0.0009 (11) 0.0163 (11) −0.0045 (10)
C5 0.0426 (16) 0.0229 (14) 0.0307 (15) 0.0045 (12) 0.0194 (13) 0.0006 (11)
C6 0.0351 (14) 0.0239 (13) 0.0242 (13) 0.0026 (11) 0.0178 (11) −0.0036 (11)
C7 0.0283 (13) 0.0236 (13) 0.0270 (13) 0.0059 (11) 0.0160 (11) −0.0023 (11)
C8 0.0297 (14) 0.0266 (14) 0.0378 (16) 0.0110 (12) 0.0133 (12) 0.0027 (12)
C9 0.0355 (15) 0.0301 (15) 0.0398 (17) 0.0049 (13) 0.0257 (14) −0.0042 (13)
C10 0.0245 (13) 0.0223 (13) 0.0236 (13) 0.0035 (10) 0.0120 (11) 0.0016 (10)
C11 0.0220 (12) 0.0186 (12) 0.0256 (13) 0.0017 (10) 0.0109 (10) 0.0015 (10)
C12 0.0234 (12) 0.0236 (13) 0.0310 (14) −0.0008 (10) 0.0132 (11) −0.0038 (11)
C13 0.0202 (11) 0.0173 (12) 0.0238 (12) 0.0044 (10) 0.0086 (10) −0.0011 (10)
C14 0.0276 (13) 0.0204 (13) 0.0328 (15) 0.0070 (11) 0.0133 (11) 0.0031 (11)
C15 0.0182 (11) 0.0229 (13) 0.0269 (13) 0.0046 (10) 0.0095 (10) 0.0012 (11)
C16 0.0193 (11) 0.0233 (13) 0.0221 (12) 0.0036 (10) 0.0095 (10) −0.0008 (10)
C17 0.0262 (13) 0.0264 (13) 0.0214 (13) 0.0030 (11) 0.0101 (11) −0.0020 (11)
C18 0.0218 (12) 0.0296 (14) 0.0344 (15) 0.0043 (11) 0.0153 (11) 0.0024 (12)

Geometric parameters (Å, º)

Cd—O1 2.4562 (19) C5—H5C 0.9800
Cd—O2 2.404 (2) C6—C7 1.550 (4)
Cd—N1 2.306 (2) C6—H6A 0.9900
Cd—N2 2.307 (2) C6—H6B 0.9900
Cd—N3 2.303 (2) C7—C8 1.527 (4)
Cd—N4 2.312 (2) C7—C9 1.542 (4)
O1—N5 1.263 (3) C8—H8A 0.9800
O2—N5 1.266 (3) C8—H8B 0.9800
O3—N5 1.234 (3) C8—H8C 0.9800
O4—N6 1.269 (4) C9—H9A 0.9800
O5—N6 1.253 (3) C9—H9B 0.9800
O6—N6 1.198 (4) C9—H9C 0.9800
O1w—H1w 0.850 (10) C10—C11 1.537 (3)
N1—C1 1.483 (3) C10—H10A 0.9900
N1—C16 1.500 (3) C10—H10B 0.9900
N1—H1n 0.8800 C11—C12 1.523 (4)
N2—C2 1.489 (3) C11—H11 1.0000
N2—C4 1.495 (3) C12—H12A 0.9800
N2—H2n 0.8800 C12—H12B 0.9800
N3—C10 1.485 (3) C12—H12C 0.9800
N3—C7 1.511 (3) C13—C14 1.534 (3)
N3—H3n 0.8800 C13—C15 1.535 (3)
N4—C11 1.494 (3) C13—H13 1.0000
N4—C13 1.496 (3) C14—H14A 0.9800
N4—H4n 0.8800 C14—H14B 0.9800
C1—C2 1.531 (4) C14—H14C 0.9800
C1—H1A 0.9900 C15—C16 1.542 (4)
C1—H1B 0.9900 C15—H15A 0.9900
C2—C3 1.525 (4) C15—H15B 0.9900
C2—H2A 1.0000 C16—C17 1.526 (4)
C3—H3A 0.9800 C16—C18 1.539 (3)
C3—H3B 0.9800 C17—H17A 0.9800
C3—H3C 0.9800 C17—H17B 0.9800
C4—C5 1.519 (4) C17—H17C 0.9800
C4—C6 1.540 (4) C18—H18A 0.9800
C4—H4A 1.0000 C18—H18B 0.9800
C5—H5A 0.9800 C18—H18C 0.9800
C5—H5B 0.9800
N3—Cd—N1 158.83 (8) C4—C6—H6A 106.2
N3—Cd—N2 88.35 (8) C7—C6—H6A 106.2
N1—Cd—N2 78.23 (7) C4—C6—H6B 106.2
N3—Cd—N4 79.08 (7) C7—C6—H6B 106.2
N1—Cd—N4 86.67 (7) H6A—C6—H6B 106.4
N2—Cd—N4 98.30 (7) N3—C7—C8 105.2 (2)
N3—Cd—O2 86.96 (7) N3—C7—C9 110.3 (2)
N1—Cd—O2 112.22 (7) C8—C7—C9 108.6 (2)
N2—Cd—O2 153.62 (7) N3—C7—C6 113.2 (2)
N4—Cd—O2 106.24 (7) C8—C7—C6 113.0 (2)
N3—Cd—O1 115.22 (7) C9—C7—C6 106.6 (2)
N1—Cd—O1 84.61 (7) C7—C8—H8A 109.5
N2—Cd—O1 106.96 (7) C7—C8—H8B 109.5
N4—Cd—O1 150.90 (7) H8A—C8—H8B 109.5
O2—Cd—O1 52.80 (7) C7—C8—H8C 109.5
N5—O1—Cd 93.68 (14) H8A—C8—H8C 109.5
N5—O2—Cd 96.09 (15) H8B—C8—H8C 109.5
C1—N1—C16 116.76 (19) C7—C9—H9A 109.5
C1—N1—Cd 106.29 (15) C7—C9—H9B 109.5
C16—N1—Cd 113.69 (15) H9A—C9—H9B 109.5
C1—N1—H1n 106.5 C7—C9—H9C 109.5
C16—N1—H1n 106.5 H9A—C9—H9C 109.5
Cd—N1—H1n 106.5 H9B—C9—H9C 109.5
C2—N2—C4 117.3 (2) N3—C10—C11 111.7 (2)
C2—N2—Cd 107.09 (15) N3—C10—H10A 109.3
C4—N2—Cd 114.53 (16) C11—C10—H10A 109.3
C2—N2—H2n 105.6 N3—C10—H10B 109.3
C4—N2—H2n 105.6 C11—C10—H10B 109.3
Cd—N2—H2n 105.6 H10A—C10—H10B 107.9
C10—N3—C7 116.0 (2) N4—C11—C12 112.0 (2)
C10—N3—Cd 105.24 (15) N4—C11—C10 107.4 (2)
C7—N3—Cd 115.00 (16) C12—C11—C10 112.6 (2)
C10—N3—H3n 106.7 N4—C11—H11 108.2
C7—N3—H3n 106.7 C12—C11—H11 108.2
Cd—N3—H3n 106.7 C10—C11—H11 108.2
C11—N4—C13 116.2 (2) C11—C12—H12A 109.5
C11—N4—Cd 106.12 (14) C11—C12—H12B 109.5
C13—N4—Cd 116.95 (15) H12A—C12—H12B 109.5
C11—N4—H4n 105.5 C11—C12—H12C 109.5
C13—N4—H4n 105.5 H12A—C12—H12C 109.5
Cd—N4—H4n 105.5 H12B—C12—H12C 109.5
O3—N5—O1 121.7 (2) N4—C13—C14 111.9 (2)
O3—N5—O2 120.8 (2) N4—C13—C15 110.8 (2)
O1—N5—O2 117.4 (2) C14—C13—C15 108.8 (2)
O6—N6—O5 122.6 (3) N4—C13—H13 108.4
O6—N6—O4 121.7 (3) C14—C13—H13 108.4
O5—N6—O4 115.8 (3) C15—C13—H13 108.4
N1—C1—C2 110.2 (2) C13—C14—H14A 109.5
N1—C1—H1A 109.6 C13—C14—H14B 109.5
C2—C1—H1A 109.6 H14A—C14—H14B 109.5
N1—C1—H1B 109.6 C13—C14—H14C 109.5
C2—C1—H1B 109.6 H14A—C14—H14C 109.5
H1A—C1—H1B 108.1 H14B—C14—H14C 109.5
N2—C2—C3 113.4 (2) C13—C15—C16 121.5 (2)
N2—C2—C1 108.3 (2) C13—C15—H15A 106.9
C3—C2—C1 110.5 (2) C16—C15—H15A 106.9
N2—C2—H2A 108.1 C13—C15—H15B 106.9
C3—C2—H2A 108.1 C16—C15—H15B 106.9
C1—C2—H2A 108.1 H15A—C15—H15B 106.7
C2—C3—H3A 109.5 N1—C16—C17 106.0 (2)
C2—C3—H3B 109.5 N1—C16—C18 109.8 (2)
H3A—C3—H3B 109.5 C17—C16—C18 108.8 (2)
C2—C3—H3C 109.5 N1—C16—C15 112.7 (2)
H3A—C3—H3C 109.5 C17—C16—C15 110.9 (2)
H3B—C3—H3C 109.5 C18—C16—C15 108.6 (2)
N2—C4—C5 110.7 (2) C16—C17—H17A 109.5
N2—C4—C6 109.7 (2) C16—C17—H17B 109.5
C5—C4—C6 117.3 (2) H17A—C17—H17B 109.5
N2—C4—H4A 106.2 C16—C17—H17C 109.5
C5—C4—H4A 106.2 H17A—C17—H17C 109.5
C6—C4—H4A 106.2 H17B—C17—H17C 109.5
C4—C5—H5A 109.5 C16—C18—H18A 109.5
C4—C5—H5B 109.5 C16—C18—H18B 109.5
H5A—C5—H5B 109.5 H18A—C18—H18B 109.5
C4—C5—H5C 109.5 C16—C18—H18C 109.5
H5A—C5—H5C 109.5 H18A—C18—H18C 109.5
H5B—C5—H5C 109.5 H18B—C18—H18C 109.5
C4—C6—C7 124.7 (2)
N3—Cd—O1—N5 −65.15 (15) Cd—O1—N5—O3 −177.3 (2)
N1—Cd—O1—N5 122.59 (14) Cd—O1—N5—O2 1.2 (2)
N2—Cd—O1—N5 −161.48 (13) Cd—O2—N5—O3 177.29 (19)
N4—Cd—O1—N5 49.4 (2) Cd—O2—N5—O1 −1.2 (2)
O2—Cd—O1—N5 −0.68 (12) C16—N1—C1—C2 −173.3 (2)
N3—Cd—O2—N5 125.85 (15) Cd—N1—C1—C2 −45.3 (2)
N1—Cd—O2—N5 −63.37 (16) C4—N2—C2—C3 61.9 (3)
N2—Cd—O2—N5 45.8 (2) Cd—N2—C2—C3 −167.8 (2)
N4—Cd—O2—N5 −156.45 (14) C4—N2—C2—C1 −175.0 (2)
O1—Cd—O2—N5 0.68 (12) Cd—N2—C2—C1 −44.7 (2)
N3—Cd—N1—C1 −36.2 (3) N1—C1—C2—N2 63.1 (3)
N2—Cd—N1—C1 15.51 (15) N1—C1—C2—C3 −172.0 (2)
N4—Cd—N1—C1 −83.68 (16) C2—N2—C4—C5 57.1 (3)
O2—Cd—N1—C1 170.12 (15) Cd—N2—C4—C5 −69.7 (2)
O1—Cd—N1—C1 124.11 (16) C2—N2—C4—C6 −171.9 (2)
N3—Cd—N1—C16 93.6 (2) Cd—N2—C4—C6 61.3 (2)
N2—Cd—N1—C16 145.33 (17) N2—C4—C6—C7 −69.3 (3)
N4—Cd—N1—C16 46.13 (16) C5—C4—C6—C7 58.0 (4)
O2—Cd—N1—C16 −60.06 (17) C10—N3—C7—C8 −166.0 (2)
O1—Cd—N1—C16 −106.07 (16) Cd—N3—C7—C8 70.6 (2)
N3—Cd—N2—C2 179.50 (17) C10—N3—C7—C9 −49.2 (3)
N1—Cd—N2—C2 15.96 (16) Cd—N3—C7—C9 −172.55 (18)
N4—Cd—N2—C2 100.78 (16) C10—N3—C7—C6 70.1 (3)
O2—Cd—N2—C2 −100.7 (2) Cd—N3—C7—C6 −53.3 (3)
O1—Cd—N2—C2 −64.60 (17) C4—C6—C7—N3 65.4 (3)
N3—Cd—N2—C4 −48.61 (17) C4—C6—C7—C8 −54.0 (3)
N1—Cd—N2—C4 147.85 (18) C4—C6—C7—C9 −173.2 (2)
N4—Cd—N2—C4 −127.33 (17) C7—N3—C10—C11 −172.6 (2)
O2—Cd—N2—C4 31.1 (3) Cd—N3—C10—C11 −44.3 (2)
O1—Cd—N2—C4 67.29 (17) C13—N4—C11—C12 −53.8 (3)
N1—Cd—N3—C10 −35.0 (3) Cd—N4—C11—C12 78.1 (2)
N2—Cd—N3—C10 −85.27 (16) C13—N4—C11—C10 −178.0 (2)
N4—Cd—N3—C10 13.51 (16) Cd—N4—C11—C10 −46.1 (2)
O2—Cd—N3—C10 120.70 (16) N3—C10—C11—N4 64.2 (3)
O1—Cd—N3—C10 166.73 (15) N3—C10—C11—C12 −59.6 (3)
N1—Cd—N3—C7 93.9 (3) C11—N4—C13—C14 −53.7 (3)
N2—Cd—N3—C7 43.65 (17) Cd—N4—C13—C14 179.69 (16)
N4—Cd—N3—C7 142.43 (18) C11—N4—C13—C15 −175.2 (2)
O2—Cd—N3—C7 −110.38 (17) Cd—N4—C13—C15 58.1 (2)
O1—Cd—N3—C7 −64.35 (18) N4—C13—C15—C16 −67.4 (3)
N3—Cd—N4—C11 18.04 (15) C14—C13—C15—C16 169.3 (2)
N1—Cd—N4—C11 −177.69 (16) C1—N1—C16—C17 −175.4 (2)
N2—Cd—N4—C11 104.73 (16) Cd—N1—C16—C17 60.3 (2)
O2—Cd—N4—C11 −65.50 (16) C1—N1—C16—C18 −58.0 (3)
O1—Cd—N4—C11 −105.02 (18) Cd—N1—C16—C18 177.63 (16)
N3—Cd—N4—C13 149.51 (18) C1—N1—C16—C15 63.1 (3)
N1—Cd—N4—C13 −46.22 (17) Cd—N1—C16—C15 −61.2 (2)
N2—Cd—N4—C13 −123.81 (17) C13—C15—C16—N1 70.9 (3)
O2—Cd—N4—C13 65.97 (18) C13—C15—C16—C17 −47.8 (3)
O1—Cd—N4—C13 26.4 (3) C13—C15—C16—C18 −167.3 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1w—H1w···O5 0.85 (1) 2.04 (2) 2.836 (3) 156 (5)
N1—H1n···O1i 0.88 2.42 3.242 (3) 155
N2—H2n···O4 0.88 2.30 3.133 (4) 157
N4—H4n···O5 0.88 2.11 2.991 (3) 175
C5—H5B···O6ii 0.98 2.58 3.539 (5) 168
C11—H11···O4iii 1.00 2.44 3.358 (3) 152
C9—H9B···O1wiv 0.98 2.51 3.451 (4) 162

Symmetry codes: (i) −x+1/2, −y+3/2, −z+1; (ii) −x+1/2, y+1/2, −z+3/2; (iii) −x+1/2, y−1/2, −z+3/2; (iv) x−1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5483).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, Oxfordshire, England.
  2. Bembi, R., Sondhi, S. M., Singh, A. K., Jhanji, A. K., Roy, T. G., Lown, J. W. & Ball, R. G. (1989). Bull. Chem. Soc. Jpn, 62, 3701–3705.
  3. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Hazari, S. K. S., Roy, T. G., Barua, K. K., Anwar, N., Zukerman-Schpector, J. & Tiekink, E. R. T. (2010). Appl. Organomet. Chem. 24, 878–887.
  6. Hazari, S. K. S., Roy, T. G., Barua, K. K. & Tiekink, E. R. T. (2008). J. Chem. Crystallogr. 38, 1–8.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681201238X/xu5483sup1.cif

e-68-0m494-sup1.cif (27.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201238X/xu5483Isup2.hkl

e-68-0m494-Isup2.hkl (231KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES