Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 31;68(Pt 4):m502. doi: 10.1107/S1600536812012093

Bis(acetato-κO)(di-2-pyridyl­amine-κ2 N 2,N 2′)palladium(II)

Kwang Ha a,*
PMCID: PMC3343887  PMID: 22589855

Abstract

In the title complex, [Pd(CH3COO)2(C10H9N3)], the PdII ion is four-coordinated in a slightly distorted square-planar environment by two pyridine N atoms of the chelating di-2-pyridyl­amine (dpa) ligand and two O atoms from two anionic acetate ligands. The dpa ligand coordinates the PdII atom in a boat conformation of the resulting chelate ring; the dihedral angle between the pyridine rings is 39.3 (2)°. The two acetate anions coordinate the PdII atom as monodentate ligands and are located on the same sides of the PdN2O2 unit plane. The carboxyl­ate groups of the anionic ligands appear to be delocalized on the basis of the C—O bond lengths. Two complex mol­ecules are assembled through inter­molecular N—H⋯O hydrogen bonds, forming a dimer-type species. Inter­molecular C—H⋯O hydrogen bonds further stabilize the crystal structure.

Related literature  

For the crystal structures of the related PdII complexes [PdX 2(dpa)] (X = Cl or Br), see: Rauterkus et al. (2003); Yao et al. (2003).graphic file with name e-68-0m502-scheme1.jpg

Experimental  

Crystal data  

  • [Pd(C2H3O2)2(C10H9N3)]

  • M r = 395.69

  • Monoclinic, Inline graphic

  • a = 8.565 (3) Å

  • b = 12.245 (5) Å

  • c = 14.230 (5) Å

  • β = 95.406 (8)°

  • V = 1485.8 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.27 mm−1

  • T = 200 K

  • 0.24 × 0.10 × 0.10 mm

Data collection  

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.777, T max = 1.000

  • 8823 measured reflections

  • 2925 independent reflections

  • 1807 reflections with I > 2σ(I)

  • R int = 0.102

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.116

  • S = 0.92

  • 2925 reflections

  • 205 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.99 e Å−3

  • Δρmin = −0.81 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global. DOI: 10.1107/S1600536812012093/zq2158sup1.cif

e-68-0m502-sup1.cif (24.2KB, cif)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Pd1—N3 2.003 (5)
Pd1—O1 2.004 (4)
Pd1—N1 2.004 (4)
Pd1—O3 2.006 (4)
N3—Pd1—N1 89.13 (19)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O2i 0.93 (6) 1.83 (7) 2.762 (7) 179 (6)
C2—H2⋯O4ii 0.95 2.58 3.302 (9) 133

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011–0030747).

supplementary crystallographic information

Comment

Crystal structures of PdII complexes with di-2-pyridylamine (dpa; C10H9N3) and halogen ions, [PdX2(dpa)] (X = Cl or Br), have been reported previously (Rauterkus et al., 2003; Yao et al., 2003).

In the title complex, [Pd(C2H3O2)2(dpa)], the PdII ion is four-coordinated in a slightly distorted square-planar environment by two pyridine N atoms of the chelating dpa ligand and two O atoms from two anionic acetato ligands (Fig. 1). The dpa ligand coordinates the Pd atom in a boat conformation. The dihedral angle between the least-squares planes of the two pyridine rings is 39.3 (2)°. The Pd—N and Pd—O bond lengths are nearly equivalent [Pd—N: 2.003 (5) and 2.004 (5) Å; Pd—O: 2.004 (4) and 2.006 (4) Å] (Table 1). The two acetate anions coordinate the Pd atom as monodentate ligands via one O atom and are located on the same sides of the PdN2O2 unit plane. The carboxylate groups of the anionic ligands appear to be delocalized on the basis of the C—O bond lengths [C—O: 1.217 (7)–1.274 (8) Å]. Two complex molecules are assembled through intermolecular N—H···O hydrogen bonds, forming a dimer-type species (Fig. 2 and Table 2). Intra- and intermolecular C—H···O hydrogen bonds stabilize further the crystal structure (Table 2). The complex molecules are stacked into columns along the a axis. In the columns, several intermolecular π···π interactions between the pyridine rings are present, the shortest ring centroid···centroid distance being 4.646 (4) Å.

Experimental

To a solution of Pd(CH3CO2)2 (0.1128 g, 0.502 mmol) in acetone (30 ml) was added di-2-pyridylamine (0.0873 g, 0.510 mmol) and stirred for 20 h at room temperature. After removal of the formed black precipitate by filtration, the solvent of the filtrate was evaporated, and the residue was washed with ether and dried under vacuum, to give a yellow powder (0.1462 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution.

Refinement

Carbon-bound H atoms were positioned geometrically and allowed to ride on their respective parent atoms: C—H = 0.95 Å (CH) or 0.98 Å (CH3) with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). Nitrogen-bound H atom was located from the difference Fourier map and refined isotropically: N—H = 0.93 (6) Å. The highest peak (0.99 e Å-3) and the deepest hole (-0.81 e Å-3) in the difference Fourier map are located 0.87 Å and 0.83 Å from the Pd1 atom, respectively.

Figures

Fig. 1.

Fig. 1.

A structure detail of the title complex, with displacement ellipsoids drawn at the 40% probability level for non-H atoms.

Fig. 2.

Fig. 2.

A view of the unit-cell contents of the title complex. Intermolecular N—H···O hydrogen-bond interactions are drawn with dashed lines.

Crystal data

[Pd(C2H3O2)2(C10H9N3)] F(000) = 792
Mr = 395.69 Dx = 1.769 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2370 reflections
a = 8.565 (3) Å θ = 2.2–25.4°
b = 12.245 (5) Å µ = 1.27 mm1
c = 14.230 (5) Å T = 200 K
β = 95.406 (8)° Block, yellow
V = 1485.8 (10) Å3 0.24 × 0.10 × 0.10 mm
Z = 4

Data collection

Bruker SMART 1000 CCD diffractometer 2925 independent reflections
Radiation source: fine-focus sealed tube 1807 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.102
φ and ω scans θmax = 26.1°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −10→10
Tmin = 0.777, Tmax = 1.000 k = −11→15
8823 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116 H atoms treated by a mixture of independent and constrained refinement
S = 0.92 w = 1/[σ2(Fo2) + (0.0372P)2] where P = (Fo2 + 2Fc2)/3
2925 reflections (Δ/σ)max < 0.001
205 parameters Δρmax = 0.99 e Å3
0 restraints Δρmin = −0.81 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pd1 0.51039 (5) 0.13264 (4) 0.30290 (3) 0.02916 (18)
O1 0.3650 (5) 0.0500 (3) 0.2099 (3) 0.0364 (11)
O2 0.3760 (6) −0.1097 (4) 0.2847 (3) 0.0481 (13)
O3 0.6539 (5) 0.1464 (4) 0.1999 (3) 0.0381 (11)
O4 0.8275 (6) 0.0325 (4) 0.2707 (3) 0.0532 (14)
N1 0.3580 (5) 0.1270 (4) 0.4014 (3) 0.0262 (11)
N2 0.5642 (6) 0.1362 (5) 0.5225 (4) 0.0332 (13)
H2N 0.584 (7) 0.126 (5) 0.587 (5) 0.044 (19)*
N3 0.6529 (6) 0.2246 (4) 0.3902 (3) 0.0282 (12)
C1 0.2031 (7) 0.1222 (5) 0.3758 (5) 0.0372 (16)
H1 0.1674 0.1271 0.3107 0.045*
C2 0.0939 (8) 0.1103 (5) 0.4403 (5) 0.0409 (17)
H2 −0.0150 0.1079 0.4202 0.049*
C3 0.1467 (8) 0.1020 (5) 0.5356 (5) 0.0390 (17)
H3 0.0743 0.0927 0.5816 0.047*
C4 0.3021 (7) 0.1074 (5) 0.5617 (4) 0.0359 (16)
H4 0.3404 0.1006 0.6263 0.043*
C5 0.4063 (7) 0.1232 (5) 0.4931 (4) 0.0263 (13)
C6 0.6661 (7) 0.2077 (5) 0.4830 (4) 0.0262 (14)
C7 0.7804 (7) 0.2595 (6) 0.5429 (5) 0.0364 (17)
H7 0.7931 0.2425 0.6083 0.044*
C8 0.8744 (8) 0.3357 (6) 0.5056 (5) 0.0386 (17)
H8 0.9526 0.3732 0.5449 0.046*
C9 0.8537 (7) 0.3569 (5) 0.4105 (4) 0.0353 (16)
H9 0.9170 0.4101 0.3836 0.042*
C10 0.7421 (8) 0.3015 (5) 0.3549 (5) 0.0368 (16)
H10 0.7272 0.3179 0.2894 0.044*
C11 0.3268 (7) −0.0486 (6) 0.2199 (4) 0.0334 (16)
C12 0.2142 (9) −0.0922 (6) 0.1420 (6) 0.061 (2)
H12A 0.2635 −0.1524 0.1103 0.092*
H12B 0.1858 −0.0339 0.0964 0.092*
H12C 0.1196 −0.1188 0.1684 0.092*
C13 0.7840 (9) 0.0952 (6) 0.2073 (4) 0.0374 (17)
C14 0.8867 (9) 0.1172 (7) 0.1291 (5) 0.060 (2)
H14A 0.9949 0.1288 0.1561 0.089*
H14B 0.8491 0.1827 0.0943 0.089*
H14C 0.8827 0.0546 0.0861 0.089*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pd1 0.0331 (3) 0.0294 (3) 0.0243 (3) −0.0019 (3) −0.00082 (19) −0.0001 (2)
O1 0.053 (3) 0.028 (3) 0.025 (2) −0.004 (2) −0.010 (2) −0.002 (2)
O2 0.072 (4) 0.039 (3) 0.032 (2) 0.002 (3) −0.004 (2) 0.005 (2)
O3 0.044 (3) 0.047 (3) 0.024 (2) −0.001 (2) 0.004 (2) 0.000 (2)
O4 0.055 (3) 0.064 (4) 0.040 (3) 0.012 (3) 0.000 (2) 0.018 (3)
N1 0.026 (3) 0.025 (3) 0.027 (3) 0.000 (2) −0.002 (2) 0.003 (2)
N2 0.037 (3) 0.033 (3) 0.029 (3) 0.002 (3) −0.002 (2) 0.003 (3)
N3 0.031 (3) 0.024 (3) 0.029 (3) 0.002 (2) 0.003 (2) 0.002 (2)
C1 0.036 (4) 0.036 (4) 0.039 (4) −0.001 (3) −0.004 (3) 0.000 (3)
C2 0.032 (4) 0.030 (4) 0.061 (5) −0.005 (3) 0.006 (3) 0.003 (4)
C3 0.038 (4) 0.035 (4) 0.046 (4) 0.002 (3) 0.013 (3) 0.004 (3)
C4 0.041 (4) 0.038 (4) 0.029 (3) 0.003 (3) 0.005 (3) 0.006 (3)
C5 0.031 (3) 0.019 (3) 0.029 (3) −0.002 (3) 0.004 (3) −0.006 (3)
C6 0.025 (3) 0.022 (4) 0.032 (3) 0.002 (3) 0.008 (3) 0.002 (3)
C7 0.028 (4) 0.049 (5) 0.032 (4) 0.002 (3) −0.001 (3) −0.006 (3)
C8 0.030 (4) 0.047 (5) 0.039 (4) −0.010 (3) 0.002 (3) −0.009 (3)
C9 0.034 (4) 0.032 (4) 0.042 (4) −0.005 (3) 0.012 (3) −0.004 (3)
C10 0.042 (4) 0.034 (4) 0.035 (4) −0.004 (3) 0.004 (3) 0.003 (3)
C11 0.037 (4) 0.029 (4) 0.033 (4) 0.000 (3) 0.002 (3) −0.002 (3)
C12 0.072 (6) 0.036 (4) 0.069 (5) −0.008 (4) −0.030 (5) −0.002 (4)
C13 0.053 (5) 0.031 (4) 0.028 (4) −0.003 (4) 0.004 (3) −0.004 (3)
C14 0.064 (5) 0.062 (6) 0.056 (5) 0.010 (5) 0.024 (4) 0.012 (4)

Geometric parameters (Å, º)

Pd1—N3 2.003 (5) C3—H3 0.9500
Pd1—O1 2.004 (4) C4—C5 1.396 (8)
Pd1—N1 2.004 (4) C4—H4 0.9500
Pd1—O3 2.006 (4) C6—C7 1.390 (8)
O1—C11 1.262 (7) C7—C8 1.372 (9)
O2—C11 1.231 (7) C7—H7 0.9500
O3—C13 1.274 (8) C8—C9 1.372 (9)
O4—C13 1.217 (7) C8—H8 0.9500
N1—C5 1.333 (7) C9—C10 1.363 (9)
N1—C1 1.344 (7) C9—H9 0.9500
N2—C5 1.386 (7) C10—H10 0.9500
N2—C6 1.392 (8) C11—C12 1.497 (9)
N2—H2N 0.93 (6) C12—H12A 0.9800
N3—C6 1.331 (7) C12—H12B 0.9800
N3—C10 1.341 (8) C12—H12C 0.9800
C1—C2 1.378 (8) C13—C14 1.506 (9)
C1—H1 0.9500 C14—H14A 0.9800
C2—C3 1.391 (9) C14—H14B 0.9800
C2—H2 0.9500 C14—H14C 0.9800
C3—C4 1.350 (9)
N3—Pd1—O1 175.98 (19) N3—C6—N2 120.0 (6)
N3—Pd1—N1 89.13 (19) C7—C6—N2 118.1 (5)
O1—Pd1—N1 92.25 (18) C8—C7—C6 118.5 (6)
N3—Pd1—O3 91.49 (19) C8—C7—H7 120.7
O1—Pd1—O3 86.87 (18) C6—C7—H7 120.7
N1—Pd1—O3 176.08 (19) C7—C8—C9 119.0 (6)
C11—O1—Pd1 124.0 (4) C7—C8—H8 120.5
C13—O3—Pd1 119.4 (4) C9—C8—H8 120.5
C5—N1—C1 118.1 (5) C10—C9—C8 119.8 (6)
C5—N1—Pd1 121.6 (4) C10—C9—H9 120.1
C1—N1—Pd1 120.2 (4) C8—C9—H9 120.1
C5—N2—C6 125.6 (5) N3—C10—C9 121.7 (6)
C5—N2—H2N 111 (4) N3—C10—H10 119.2
C6—N2—H2N 115 (4) C9—C10—H10 119.2
C6—N3—C10 118.9 (6) O2—C11—O1 126.4 (6)
C6—N3—Pd1 121.2 (4) O2—C11—C12 119.3 (6)
C10—N3—Pd1 119.9 (4) O1—C11—C12 114.4 (6)
N1—C1—C2 122.6 (6) C11—C12—H12A 109.5
N1—C1—H1 118.7 C11—C12—H12B 109.5
C2—C1—H1 118.7 H12A—C12—H12B 109.5
C1—C2—C3 118.5 (6) C11—C12—H12C 109.5
C1—C2—H2 120.7 H12A—C12—H12C 109.5
C3—C2—H2 120.7 H12B—C12—H12C 109.5
C4—C3—C2 119.1 (6) O4—C13—O3 125.1 (6)
C4—C3—H3 120.5 O4—C13—C14 120.1 (7)
C2—C3—H3 120.5 O3—C13—C14 114.7 (6)
C3—C4—C5 119.6 (6) C13—C14—H14A 109.5
C3—C4—H4 120.2 C13—C14—H14B 109.5
C5—C4—H4 120.2 H14A—C14—H14B 109.5
N1—C5—N2 119.6 (5) C13—C14—H14C 109.5
N1—C5—C4 122.0 (5) H14A—C14—H14C 109.5
N2—C5—C4 118.4 (5) H14B—C14—H14C 109.5
N3—C6—C7 121.8 (6)
N1—Pd1—O1—C11 −66.8 (5) C6—N2—C5—N1 38.0 (9)
O3—Pd1—O1—C11 117.1 (5) C6—N2—C5—C4 −141.4 (6)
N3—Pd1—O3—C13 72.3 (5) C3—C4—C5—N1 −3.8 (10)
O1—Pd1—O3—C13 −111.3 (5) C3—C4—C5—N2 175.5 (6)
N3—Pd1—N1—C5 −35.4 (5) C10—N3—C6—C7 −6.7 (9)
O1—Pd1—N1—C5 148.3 (5) Pd1—N3—C6—C7 170.5 (5)
N3—Pd1—N1—C1 147.5 (5) C10—N3—C6—N2 173.6 (6)
O1—Pd1—N1—C1 −28.7 (5) Pd1—N3—C6—N2 −9.3 (8)
N1—Pd1—N3—C6 36.1 (5) C5—N2—C6—N3 −37.1 (9)
O3—Pd1—N3—C6 −147.8 (5) C5—N2—C6—C7 143.1 (6)
N1—Pd1—N3—C10 −146.8 (5) N3—C6—C7—C8 4.6 (10)
O3—Pd1—N3—C10 29.3 (5) N2—C6—C7—C8 −175.6 (6)
C5—N1—C1—C2 −1.9 (10) C6—C7—C8—C9 −0.8 (10)
Pd1—N1—C1—C2 175.2 (5) C7—C8—C9—C10 −0.7 (10)
N1—C1—C2—C3 −0.6 (10) C6—N3—C10—C9 5.0 (9)
C1—C2—C3—C4 1.0 (10) Pd1—N3—C10—C9 −172.2 (5)
C2—C3—C4—C5 1.1 (10) C8—C9—C10—N3 −1.3 (10)
C1—N1—C5—N2 −175.2 (5) Pd1—O1—C11—O2 −3.0 (10)
Pd1—N1—C5—N2 7.7 (8) Pd1—O1—C11—C12 178.9 (5)
C1—N1—C5—C4 4.1 (9) Pd1—O3—C13—O4 3.9 (9)
Pd1—N1—C5—C4 −173.0 (5) Pd1—O3—C13—C14 −176.2 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2N···O2i 0.93 (6) 1.83 (7) 2.762 (7) 179 (6)
C1—H1···O1 0.95 2.50 2.983 (8) 111
C2—H2···O4ii 0.95 2.58 3.302 (9) 133
C10—H10···O3 0.95 2.51 2.954 (8) 109

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2158).

References

  1. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Rauterkus, M. J., Fakih, S., Mock, C., Puscasu, I. & Krebs, B. (2003). Inorg. Chim. Acta, 350, 355–365.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  6. Yao, W.-R., Liu, Z.-H. & Zhang, Q.-F. (2003). Acta Cryst. C59, m139–m140. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global. DOI: 10.1107/S1600536812012093/zq2158sup1.cif

e-68-0m502-sup1.cif (24.2KB, cif)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES