Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 31;68(Pt 4):m504–m505. doi: 10.1107/S160053681201272X

Bis(2-{[(9H-fluoren-2-yl)methyl­idene]amino}­phenolato-κ2 N,O)zinc methanol disolvate

Young-Inn Kim a, Sung-Jae Yun a, Inn-Hye Hwang a, Dae-Young Kim a, Sung Kwon Kang b,*
PMCID: PMC3343889  PMID: 22589857

Abstract

In the title compound, [Zn(C20H14NO)2]·2CH3OH, the ZnII atom lies on a crystallographic twofold rotation axis and is coordinated by two O atoms and two N atoms from two bidentate 2-{[(9H-fluoren-2-yl)methyl­idene]amino}­phenolate ligands within a distorted tetra­hedral geometry. The dihedral angle between the two chelate rings is 82.92 (5)°. In the coordinated ligand, the phenol ring is twisted at 30.22 (9)° from the mean plane of the fluorene ring. In the crystal, O—H⋯O hydrogen bonds link the complex mol­ecules to the methanol solvent mol­ecules.

Related literature  

For general background to Schiff base complexes, see: Ji et al. (2012); Niu et al. (2012); Liu et al. (2011); Roy et al. (2009). For the structures and luminescent properties of Hg(II) complexes, see: Kim et al. (2011); Kim & Kang (2010). For the physical properties of fluorene complexes, see: Scaria et al. (2010); Loy et al. (2002); Miteva et al. (2001).graphic file with name e-68-0m504-scheme1.jpg

Experimental  

Crystal data  

  • [Zn(C20H14NO)2]·2CH4O

  • M r = 698.1

  • Monoclinic, Inline graphic

  • a = 13.7294 (3) Å

  • b = 13.9123 (2) Å

  • c = 18.8383 (3) Å

  • β = 110.652 (1)°

  • V = 3367.03 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 296 K

  • 0.10 × 0.05 × 0.04 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002) T min = 0.922, T max = 0.966

  • 10682 measured reflections

  • 3078 independent reflections

  • 2134 reflections with I > 2σ(I)

  • R int = 0.039

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.096

  • S = 1.02

  • 3078 reflections

  • 227 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681201272X/tk5073sup1.cif

e-68-0m504-sup1.cif (23.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201272X/tk5073Isup2.hkl

e-68-0m504-Isup2.hkl (148.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Zn1—O1 1.9239 (17)
Zn1—N8 2.052 (2)
C7—N8 1.433 (3)
N8—C9 1.293 (3)
O1i—Zn1—O1 115.61 (11)
O1i—Zn1—N8 125.99 (8)
O1—Zn1—N8 85.68 (8)
N8—Zn1—N8i 122.53 (11)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O24—H24⋯O1 0.98 (4) 1.82 (5) 2.794 (3) 173 (4)

Acknowledgments

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 20110003799).

supplementary crystallographic information

Comment

Schiff base ligands have attracted attention due to their facile syntheses, easily tunable steric and electronic properties resulting in a good performance in sensor technologies and electroluminescence devices (Ji et al., 2012; Niu et al., 2012; Liu et al., 2011; Roy et al., 2009). Recently, we reported group 12, Hg(II) complexes with Schiff bases with an emphasis on their luminescent properties (Kim & Kang, 2010; Kim et al., 2011). Herein, we designed new Schiff base containing a fluorene moiety since flourene has high triplet energy and good-hole transporting ability (Scaria et al., 2010; Loy et al., 2002; Miteva et al., 2001) and synthesized its Zn(II) complex. The title compound shows a red emission at 611 nm with a quantum yield of 1.2% in a DMF solution upon 300 nm excitation.

In (I), Fig. 1, the ZnII atom lies on a twofold axis and is coordinated by two O atoms and two N atoms of two bidentate 2-((9H-fluoren-2-yl)methyleneamino)phenolato ligands in a distorted tetrahedral geometry. The angles around Zn atom are within the range of 85.68 (8)–125.99 (8) ° (Table 1). The dihedral angle between the O1/Zn1/N8 and O1i/Zn1/N1i [symmetry code: (i) -x + 1, y, -z + 3/2] is 83.48 (6) °. The fluorene moiety (C9—C22) is almost planar, with r.m.s. deviations of 0.018 Å from the corresponding least-squares plane defined by the thirteen constituent atoms. In the 2-((9H-fluoren-2-yl)methyleneamino)phenol ligand, the phenol ring (O1–C7) is twisted at 30.22 (9) ° from the mean plane of the fluorene ring. The presence of intermolecular O24—H24···O1 hydrogen bonds link the complex and solvent molecules (Table 2 and Fig. 1).

Experimental

Preparation of ligand: 9H-fluorene-2-carbaldehyde (1.94 g, 10 mmol) was slowly added to 2-aminophenol (1.09 g, 10 mmol) in methanol/methylenechloride (1:1 v/v) (40 ml) solution at 50 °C for 5 h to obtain (E)-2-((9H-fluoren-2-yl)methyleneamino)phenol (L) as a yellow powder. Yield: 1.55 g (75%).

Preparation of zinc(II) compound: the reaction of L compound (1.50 g, 10 mmol) with zinc(II) acetate (0.91 g, 5 mmol) in methanol/methylenechloride (1:1 v/v) (40 ml) at 50 °C for 5 h yielded the title compound as an orange powder. The powder was filtered off and washed with hexane. Yield: 0.95 g (30%). Orange crystals of (I) were obtained from its ethanol solution by slow evaporation of the solvent at room temperature.

Refinement

Atom H24 of the OH group was located from a difference Fourier map and refined freely [refined distance; O—H = 0.98 (4) Å]. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 – 0.97 Å with Uiso(H) = 1.2Ueq(carrier C) for aromatic- and methylene-H, and 1.5Ueq(carrier C) for methyl-H atoms.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom-numbering scheme and 30% probability ellipsoids. The O—H···O hydrogen bonds are indicated by dashed lines. [symmetry code: (i) -x + 1, y, -z + 3/2].

Crystal data

[Zn(C20H14NO)2]·2CH4O F(000) = 1456
Mr = 698.1 Dx = 1.377 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2869 reflections
a = 13.7294 (3) Å θ = 2.2–25.3°
b = 13.9123 (2) Å µ = 0.78 mm1
c = 18.8383 (3) Å T = 296 K
β = 110.652 (1)° Block, orange
V = 3367.03 (10) Å3 0.1 × 0.05 × 0.04 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 2134 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.039
φ and ω scans θmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2002) h = −9→16
Tmin = 0.922, Tmax = 0.966 k = −13→16
10682 measured reflections l = −22→16
3078 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.3461P] where P = (Fo2 + 2Fc2)/3
3078 reflections (Δ/σ)max < 0.001
227 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.5 0.57842 (3) 0.75 0.04130 (18)
O1 0.40411 (14) 0.65210 (12) 0.66885 (10) 0.0454 (5)
C2 0.3082 (2) 0.61436 (18) 0.64660 (16) 0.0400 (7)
C3 0.2277 (2) 0.6498 (2) 0.58475 (17) 0.0515 (8)
H3 0.2406 0.7007 0.5573 0.062*
C4 0.1294 (3) 0.6119 (2) 0.56296 (17) 0.0558 (8)
H4 0.0765 0.6381 0.5217 0.067*
C5 0.1082 (2) 0.5351 (2) 0.60185 (17) 0.0558 (8)
H5 0.0419 0.5083 0.586 0.067*
C6 0.1861 (2) 0.4984 (2) 0.66416 (16) 0.0499 (8)
H6 0.1721 0.4467 0.6903 0.06*
C7 0.2851 (2) 0.53798 (18) 0.68829 (15) 0.0380 (7)
N8 0.37074 (17) 0.50751 (14) 0.75354 (12) 0.0372 (5)
C9 0.3537 (2) 0.45901 (18) 0.80656 (16) 0.0433 (7)
H9 0.2846 0.4457 0.7997 0.052*
C10 0.4315 (2) 0.42353 (17) 0.87534 (15) 0.0410 (7)
C11 0.3957 (2) 0.38990 (19) 0.93208 (16) 0.0468 (7)
H11 0.3245 0.3882 0.9225 0.056*
C12 0.4632 (2) 0.35952 (18) 1.00140 (16) 0.0456 (7)
H12 0.4382 0.3384 1.0386 0.055*
C13 0.5689 (2) 0.36100 (17) 1.01473 (15) 0.0404 (7)
C14 0.6578 (2) 0.33320 (18) 1.08148 (15) 0.0414 (7)
C15 0.6623 (3) 0.29326 (19) 1.15031 (17) 0.0507 (8)
H15 0.6014 0.2809 1.1597 0.061*
C16 0.7570 (3) 0.2723 (2) 1.20397 (18) 0.0619 (9)
H16 0.7606 0.2456 1.2501 0.074*
C17 0.8467 (3) 0.2908 (2) 1.1897 (2) 0.0730 (10)
H17 0.9106 0.2766 1.2269 0.088*
C18 0.8446 (3) 0.3300 (2) 1.1216 (2) 0.0697 (10)
H18 0.906 0.342 1.1129 0.084*
C19 0.7496 (2) 0.35077 (19) 1.06721 (17) 0.0510 (8)
C20 0.7238 (2) 0.3916 (2) 0.98824 (17) 0.0548 (8)
H20A 0.7525 0.4556 0.9899 0.066*
H20B 0.75 0.3506 0.9574 0.066*
C21 0.6071 (2) 0.39376 (18) 0.95847 (16) 0.0411 (7)
C22 0.5384 (2) 0.42345 (18) 0.88995 (16) 0.0456 (7)
H22 0.5633 0.4439 0.8525 0.055*
C23 0.4138 (3) 0.9024 (3) 0.6538 (2) 0.0906 (12)
H23A 0.3826 0.8908 0.6003 0.136*
H23B 0.4867 0.8876 0.6704 0.136*
H23C 0.4049 0.9688 0.6641 0.136*
O24 0.36624 (18) 0.84464 (18) 0.69240 (13) 0.0716 (7)
H24 0.385 (3) 0.778 (3) 0.687 (2) 0.141 (17)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0383 (3) 0.0397 (3) 0.0464 (3) 0 0.0155 (2) 0
O1 0.0421 (13) 0.0433 (11) 0.0542 (12) −0.0024 (9) 0.0210 (10) 0.0088 (9)
C2 0.0394 (19) 0.0400 (15) 0.0429 (18) 0.0036 (14) 0.0176 (16) 0.0002 (14)
C3 0.052 (2) 0.0487 (17) 0.053 (2) 0.0051 (16) 0.0180 (18) 0.0143 (15)
C4 0.046 (2) 0.064 (2) 0.0497 (19) 0.0113 (17) 0.0070 (17) 0.0078 (16)
C5 0.044 (2) 0.066 (2) 0.054 (2) −0.0049 (17) 0.0124 (18) 0.0040 (17)
C6 0.046 (2) 0.0517 (17) 0.0512 (19) −0.0036 (16) 0.0163 (17) 0.0059 (15)
C7 0.0383 (18) 0.0370 (14) 0.0400 (16) 0.0024 (13) 0.0155 (15) −0.0011 (13)
N8 0.0392 (14) 0.0354 (12) 0.0392 (13) 0.0002 (11) 0.0165 (12) 0.0007 (11)
C9 0.0421 (19) 0.0404 (15) 0.0502 (19) −0.0046 (14) 0.0197 (16) −0.0011 (14)
C10 0.0484 (19) 0.0363 (14) 0.0405 (17) −0.0011 (14) 0.0184 (15) 0.0020 (14)
C11 0.0410 (19) 0.0538 (17) 0.0475 (19) −0.0024 (14) 0.0178 (16) 0.0054 (15)
C12 0.047 (2) 0.0503 (17) 0.0452 (18) 0.0003 (15) 0.0232 (16) 0.0069 (14)
C13 0.045 (2) 0.0310 (14) 0.0466 (18) −0.0013 (14) 0.0177 (16) −0.0020 (13)
C14 0.046 (2) 0.0336 (15) 0.0435 (17) 0.0020 (13) 0.0141 (16) 0.0006 (13)
C15 0.054 (2) 0.0461 (17) 0.051 (2) 0.0051 (15) 0.0167 (18) 0.0000 (15)
C16 0.070 (3) 0.058 (2) 0.053 (2) 0.0075 (19) 0.015 (2) 0.0081 (16)
C17 0.052 (2) 0.078 (2) 0.070 (2) 0.0054 (19) −0.002 (2) 0.016 (2)
C18 0.047 (2) 0.078 (2) 0.076 (3) −0.0037 (18) 0.013 (2) 0.017 (2)
C19 0.046 (2) 0.0468 (17) 0.057 (2) −0.0035 (15) 0.0131 (18) 0.0079 (15)
C20 0.045 (2) 0.0551 (18) 0.067 (2) −0.0028 (15) 0.0223 (17) 0.0119 (16)
C21 0.0400 (18) 0.0382 (15) 0.0450 (18) −0.0013 (13) 0.0151 (16) 0.0045 (13)
C22 0.050 (2) 0.0434 (16) 0.0505 (19) −0.0010 (15) 0.0262 (17) 0.0063 (15)
C23 0.076 (3) 0.095 (3) 0.102 (3) −0.004 (2) 0.032 (3) 0.034 (2)
O24 0.0702 (17) 0.0578 (14) 0.0988 (18) −0.0035 (12) 0.0448 (15) 0.0010 (13)

Geometric parameters (Å, º)

Zn1—O1i 1.9239 (18) C12—H12 0.93
Zn1—O1 1.9239 (17) C13—C21 1.413 (3)
Zn1—N8 2.052 (2) C13—C14 1.462 (4)
Zn1—N8i 2.052 (2) C14—C15 1.392 (4)
O1—C2 1.341 (3) C14—C19 1.399 (4)
C2—C3 1.383 (4) C15—C16 1.367 (4)
C2—C7 1.422 (4) C15—H15 0.93
C3—C4 1.370 (4) C16—C17 1.374 (4)
C3—H3 0.93 C16—H16 0.93
C4—C5 1.384 (4) C17—C18 1.385 (4)
C4—H4 0.93 C17—H17 0.93
C5—C6 1.376 (4) C18—C19 1.376 (4)
C5—H5 0.93 C18—H18 0.93
C6—C7 1.387 (4) C19—C20 1.513 (4)
C6—H6 0.93 C20—C21 1.499 (4)
C7—N8 1.433 (3) C20—H20A 0.97
N8—C9 1.293 (3) C20—H20B 0.97
C9—C10 1.445 (4) C21—C22 1.367 (4)
C9—H9 0.93 C22—H22 0.93
C10—C22 1.395 (4) C23—O24 1.392 (4)
C10—C11 1.404 (3) C23—H23A 0.96
C11—C12 1.374 (4) C23—H23B 0.96
C11—H11 0.93 C23—H23C 0.96
C12—C13 1.384 (4) O24—H24 0.98 (4)
O1i—Zn1—O1 115.61 (11) C12—C13—C21 120.8 (3)
O1i—Zn1—N8 125.99 (8) C12—C13—C14 131.0 (3)
O1—Zn1—N8 85.68 (8) C21—C13—C14 108.2 (3)
O1i—Zn1—N8i 85.68 (8) C15—C14—C19 120.1 (3)
O1—Zn1—N8i 125.99 (8) C15—C14—C13 131.0 (3)
N8—Zn1—N8i 122.53 (11) C19—C14—C13 108.9 (2)
C2—O1—Zn1 111.18 (15) C16—C15—C14 119.5 (3)
O1—C2—C3 121.9 (3) C16—C15—H15 120.3
O1—C2—C7 120.4 (3) C14—C15—H15 120.3
C3—C2—C7 117.7 (3) C15—C16—C17 120.0 (3)
C4—C3—C2 121.7 (3) C15—C16—H16 120
C4—C3—H3 119.2 C17—C16—H16 120
C2—C3—H3 119.2 C16—C17—C18 121.8 (3)
C3—C4—C5 120.5 (3) C16—C17—H17 119.1
C3—C4—H4 119.8 C18—C17—H17 119.1
C5—C4—H4 119.8 C19—C18—C17 118.5 (3)
C6—C5—C4 119.5 (3) C19—C18—H18 120.7
C6—C5—H5 120.2 C17—C18—H18 120.7
C4—C5—H5 120.2 C18—C19—C14 120.1 (3)
C5—C6—C7 120.6 (3) C18—C19—C20 130.0 (3)
C5—C6—H6 119.7 C14—C19—C20 109.9 (3)
C7—C6—H6 119.7 C21—C20—C19 102.9 (2)
C6—C7—C2 119.9 (3) C21—C20—H20A 111.2
C6—C7—N8 125.2 (2) C19—C20—H20A 111.2
C2—C7—N8 114.8 (2) C21—C20—H20B 111.2
C9—N8—C7 120.0 (2) C19—C20—H20B 111.2
C9—N8—Zn1 132.1 (2) H20A—C20—H20B 109.1
C7—N8—Zn1 106.68 (16) C22—C21—C13 119.4 (3)
N8—C9—C10 126.4 (3) C22—C21—C20 130.6 (3)
N8—C9—H9 116.8 C13—C21—C20 110.0 (3)
C10—C9—H9 116.8 C21—C22—C10 121.0 (2)
C22—C10—C11 118.4 (3) C21—C22—H22 119.5
C22—C10—C9 124.8 (2) C10—C22—H22 119.5
C11—C10—C9 116.7 (3) O24—C23—H23A 109.5
C12—C11—C10 121.7 (3) O24—C23—H23B 109.5
C12—C11—H11 119.1 H23A—C23—H23B 109.5
C10—C11—H11 119.1 O24—C23—H23C 109.5
C11—C12—C13 118.7 (3) H23A—C23—H23C 109.5
C11—C12—H12 120.6 H23B—C23—H23C 109.5
C13—C12—H12 120.6 C23—O24—H24 108 (2)

Symmetry code: (i) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O24—H24···O1 0.98 (4) 1.82 (5) 2.794 (3) 173 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5073).

References

  1. Bruker (2002). SADABS, SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  4. Ji, Y. F., Wang, R., Ding, S., Du, C. F. & Liu, Z. L. (2012). Inorg. Chem. Commun. 16, 47–50.
  5. Kim, Y.-I. & Kang, S. K. (2010). Acta Cryst. E66, m1251. [DOI] [PMC free article] [PubMed]
  6. Kim, Y.-I., Song, Y.-K., Yun, S.-J., Kim, I.-C. & Kang, S. K. (2011). Acta Cryst. E67, m52–m53. [DOI] [PMC free article] [PubMed]
  7. Liu, S. B., Bi, C. F., Fan, Y. H., Zhao, Y., Zhang, P. F., Luo, Q. D. & Zhang, D. M. (2011). Inorg. Chem. Commun. 14, 1297–1301.
  8. Loy, D. E., Koene, B. E. & Thompson, M. E. (2002). Adv. Funct. Mater. 12, 245–249.
  9. Miteva, T., Meisel, A., Knoll, W., Nothofer, H. G., Scherf, U., Müller, D. C., Meerholz, K., Yasuda, A. & Neher, D. (2001). Adv. Mater. 18, 565–570.
  10. Niu, W. J., Wang, J. L., Bai, Y. & Dang, D. B. (2012). Spectrochim. Acta Part A, 91, 61–66. [DOI] [PubMed]
  11. Roy, P., Dhara, K., Manassero, M. & Banerjee, P. (2009). Inorg. Chim. Acta, 362, 2927–2932.
  12. Scaria, R., Muellen, K. & Jacob, J. (2010). Polymer, 51, 5705–5711.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681201272X/tk5073sup1.cif

e-68-0m504-sup1.cif (23.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681201272X/tk5073Isup2.hkl

e-68-0m504-Isup2.hkl (148.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES