Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 31;68(Pt 4):m519. doi: 10.1107/S1600536812013074

Bis(azido-κN)(di-2-pyridyl­amine-κ2 N 2,N 2′)palladium(II)

Kwang Ha a,*
PMCID: PMC3343901  PMID: 22589869

Abstract

In the title complex, [Pd(N3)2(C10H9N3)], the PdII ion is in a slightly distorted square-planar coordination environment. The ligator atoms comprise the two pyridine N atoms of the chelating di-2-pyridyl­amine (dpa) ligand and two N atoms from two azide anions. The dpa ligand coordinates the Pd atom in a boat conformation, the dihedral angle between the pyridine rings being 24.4 (1)°. The pyridine rings are somewhat inclined to the least-squares plane of the PdN4 unit, making dihedral angles of 29.02 (9) and 26.47 (9)°. The azide ligands are slightly bent, with N—N—N angles of 173.0 (4) and 174.2 (4)°. In the crystal, mol­ecules are connected by N—H⋯N and C—H⋯N hydrogen bonds, forming chains along the c axis. When viewed down the b axis, successive chains are stacked in opposite directions. Intra­molecular C—H⋯N hydrogen bonds are also observed.

Related literature  

For the crystal structures of the related PdII complexes [PdX 2(dpa)] (X = Cl or Br), see: Rauterkus et al. (2003); Yao et al. (2003).graphic file with name e-68-0m519-scheme1.jpg

Experimental  

Crystal data  

  • [Pd(N3)2(C10H9N3)]

  • M r = 361.66

  • Monoclinic, Inline graphic

  • a = 17.5552 (15) Å

  • b = 6.9773 (6) Å

  • c = 19.6654 (17) Å

  • β = 99.206 (2)°

  • V = 2377.7 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.57 mm−1

  • T = 200 K

  • 0.20 × 0.14 × 0.09 mm

Data collection  

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.901, T max = 1.000

  • 7041 measured reflections

  • 2322 independent reflections

  • 1751 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.073

  • S = 1.06

  • 2322 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global. DOI: 10.1107/S1600536812013074/fj2539sup1.cif

e-68-0m519-sup1.cif (22.2KB, cif)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Pd1—N4 2.001 (3)
Pd1—N7 2.018 (3)
Pd1—N1 2.040 (3)
Pd1—N3 2.046 (3)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯N9i 0.92 2.31 3.208 (4) 165
C1—H1⋯N4 0.95 2.35 2.816 (5) 110
C4—H4⋯N6i 0.95 2.40 3.175 (5) 138
C10—H10⋯N7 0.95 2.35 2.861 (5) 113

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011–0030747).

supplementary crystallographic information

Comment

Crystal structures of PdII complexes with di-2-pyridylamine (dpa; C10H9N3) and halogen ions, [PdX2(dpa)] (X = Cl or Br), have been reported previously (Rauterkus et al., 2003; Yao et al., 2003).

In the title complex, [Pd(N3)2(dpa)], the PdII ion is four-coordinated in a slightly distorted square-planar environment by the two pyridine N atoms of the chelating dpa ligand and two N atoms from two azide anions (Fig. 1). The dpa ligand coordinates the Pd atom in a boat conformation. The dihedral angle between the least-squares planes of the two pyridine rings is 24.4 (1)°. The pyridine rings are somewhat inclined to the least-squares plane of the PdN4 unit [maximum deviation = 0.016 (2) Å], making dihedral angles of 29.02 (9)° and 26.47 (9)°. The Pd—N(azide) and Pd—N(dpa) bond lengths are nearly equivalent [Pd—N: 2.001 (3)–2.046 (3) Å] (Table 1). The azide ligands are slightly bent with the bond angles of <N4—N5—N6 = 173.0 (4)° and <N7—N8—N9 = 174.2 (4)°. But, the N—N bond lengths of the ligands are almost equal [N—N: 1.146 (4)–1.212 (4) Å]. In the crystal, the complex molecules are connected by intermolecular N—H···N and C—H···N hydrogen bonds, forming chains along the c axis (Fig. 2 and Table 2). When viewed down the b axis, successive chains are stacked in opposite directions. Intramolecular C—H···N hydrogen bonds are also observed (Table 2).

Experimental

To a solution of Na2PdCl4 (0.1451 g, 0.493 mmol) in MeOH (30 ml) were added NaN3 (0.3050 g, 4.692 mmol) and di-2-pyridylamine (0.0860 g, 0.502 mmol), and stirred for 5 h at room temperature. The formed precipitate was separated by filtration and washed with H2O and acetone, and dried at 50 °C, to give a yellow powder (0.1604 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN/acetone solution.

Refinement

Carbon-bound H atoms were positioned geometrically and allowed to ride on their respective parent atoms: C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C). Nitrogen-bound H atom was located from the difference Fourier map then allowed to ride on its parent atom in the final cycles of refinement with N—H = 0.92 Å and Uiso(H) = 1.5 Ueq(N). The highest peak (0.71 e Å-3) and the deepest hole (-0.41 e Å-3) in the difference Fourier map are located 1.07 Å and 1.54 Å, respectively, from the Pd1 atom.

Figures

Fig. 1.

Fig. 1.

A structure detail of the title complex, with displacement ellipsoids drawn at the 50% probability level for non-H atoms.

Fig. 2.

Fig. 2.

A partial view of the unit-cell contents of the title complex. Intermolecular N—H···N and C—H···N hydrogen-bond interactions are drawn with dashed lines.

Crystal data

[Pd(N3)2(C10H9N3)] F(000) = 1424
Mr = 361.66 Dx = 2.021 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 3353 reflections
a = 17.5552 (15) Å θ = 2.4–26.0°
b = 6.9773 (6) Å µ = 1.57 mm1
c = 19.6654 (17) Å T = 200 K
β = 99.206 (2)° Block, yellow
V = 2377.7 (4) Å3 0.20 × 0.14 × 0.09 mm
Z = 8

Data collection

Bruker SMART 1000 CCD diffractometer 2322 independent reflections
Radiation source: fine-focus sealed tube 1751 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
φ and ω scans θmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −21→17
Tmin = 0.901, Tmax = 1.000 k = −8→8
7041 measured reflections l = −20→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0309P)2 + 3.0994P] where P = (Fo2 + 2Fc2)/3
2322 reflections (Δ/σ)max = 0.001
181 parameters Δρmax = 0.71 e Å3
0 restraints Δρmin = −0.41 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pd1 0.251934 (14) 0.29162 (4) 0.249235 (13) 0.02012 (11)
N1 0.31748 (16) 0.2924 (4) 0.17242 (15) 0.0204 (6)
N2 0.21863 (17) 0.4333 (4) 0.09167 (16) 0.0283 (8)
H2N 0.2104 0.4969 0.0502 0.042*
N3 0.15471 (16) 0.2919 (4) 0.17634 (15) 0.0216 (7)
N4 0.35049 (17) 0.2861 (5) 0.31632 (16) 0.0299 (8)
N5 0.36249 (16) 0.3271 (4) 0.37610 (17) 0.0266 (7)
N6 0.38160 (18) 0.3598 (6) 0.43357 (18) 0.0409 (9)
N7 0.18386 (17) 0.2944 (5) 0.32278 (15) 0.0266 (7)
N8 0.19687 (16) 0.3593 (5) 0.38063 (16) 0.0258 (7)
N9 0.20315 (19) 0.4148 (5) 0.43611 (17) 0.0386 (9)
C1 0.3921 (2) 0.2266 (6) 0.18546 (19) 0.0285 (9)
H1 0.4083 0.1574 0.2269 0.034*
C2 0.4441 (2) 0.2556 (6) 0.1421 (2) 0.0334 (10)
H2 0.4952 0.2077 0.1530 0.040*
C3 0.4206 (2) 0.3575 (6) 0.0812 (2) 0.0336 (9)
H3 0.4564 0.3859 0.0512 0.040*
C4 0.3451 (2) 0.4161 (6) 0.06515 (19) 0.0293 (9)
H4 0.3275 0.4816 0.0233 0.035*
C5 0.2950 (2) 0.3771 (5) 0.11182 (18) 0.0239 (8)
C6 0.1522 (2) 0.3672 (5) 0.11384 (18) 0.0237 (8)
C7 0.0833 (2) 0.3866 (6) 0.06780 (19) 0.0306 (9)
H7 0.0829 0.4454 0.0242 0.037*
C8 0.0162 (2) 0.3195 (6) 0.0865 (2) 0.0375 (10)
H8 −0.0312 0.3297 0.0557 0.045*
C9 0.0183 (2) 0.2366 (6) 0.1508 (2) 0.0349 (10)
H9 −0.0275 0.1898 0.1649 0.042*
C10 0.0877 (2) 0.2234 (6) 0.1935 (2) 0.0309 (9)
H10 0.0893 0.1636 0.2371 0.037*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pd1 0.02099 (16) 0.02298 (17) 0.01673 (16) 0.00000 (12) 0.00408 (10) 0.00056 (12)
N1 0.0239 (15) 0.0216 (16) 0.0162 (16) −0.0020 (12) 0.0047 (12) −0.0003 (13)
N2 0.0321 (18) 0.0315 (19) 0.0216 (18) −0.0010 (14) 0.0052 (14) 0.0068 (14)
N3 0.0223 (15) 0.0254 (17) 0.0177 (16) 0.0004 (12) 0.0052 (12) −0.0014 (13)
N4 0.0252 (17) 0.048 (2) 0.0152 (17) 0.0007 (15) 0.0007 (13) −0.0011 (15)
N5 0.0199 (16) 0.0304 (19) 0.030 (2) 0.0012 (13) 0.0061 (14) 0.0027 (15)
N6 0.0316 (19) 0.064 (3) 0.026 (2) 0.0045 (18) 0.0017 (15) −0.0128 (19)
N7 0.0278 (17) 0.036 (2) 0.0168 (17) −0.0026 (14) 0.0066 (13) −0.0029 (14)
N8 0.0219 (16) 0.0279 (18) 0.029 (2) 0.0031 (13) 0.0086 (13) 0.0072 (15)
N9 0.043 (2) 0.055 (3) 0.0188 (19) 0.0027 (17) 0.0069 (15) −0.0075 (17)
C1 0.028 (2) 0.033 (2) 0.024 (2) 0.0014 (17) 0.0032 (16) −0.0021 (17)
C2 0.025 (2) 0.044 (3) 0.033 (2) 0.0013 (17) 0.0092 (17) −0.008 (2)
C3 0.031 (2) 0.044 (3) 0.028 (2) −0.0066 (19) 0.0133 (17) −0.009 (2)
C4 0.041 (2) 0.030 (2) 0.016 (2) −0.0032 (17) 0.0063 (16) 0.0008 (16)
C5 0.0278 (19) 0.0212 (19) 0.023 (2) −0.0016 (16) 0.0038 (15) −0.0058 (17)
C6 0.032 (2) 0.0182 (19) 0.022 (2) 0.0030 (16) 0.0066 (15) −0.0053 (16)
C7 0.038 (2) 0.030 (2) 0.022 (2) 0.0006 (19) −0.0013 (16) 0.0027 (18)
C8 0.030 (2) 0.043 (3) 0.037 (3) 0.0045 (18) −0.0019 (18) −0.005 (2)
C9 0.024 (2) 0.044 (3) 0.037 (3) −0.0038 (18) 0.0063 (17) −0.005 (2)
C10 0.033 (2) 0.036 (2) 0.025 (2) −0.0019 (18) 0.0094 (17) −0.0033 (18)

Geometric parameters (Å, º)

Pd1—N4 2.001 (3) C1—H1 0.9500
Pd1—N7 2.018 (3) C2—C3 1.397 (5)
Pd1—N1 2.040 (3) C2—H2 0.9500
Pd1—N3 2.046 (3) C3—C4 1.374 (5)
N1—C5 1.332 (4) C3—H3 0.9500
N1—C1 1.373 (4) C4—C5 1.396 (5)
N2—C6 1.387 (4) C4—H4 0.9500
N2—C5 1.393 (4) C6—C7 1.398 (5)
N2—H2N 0.9200 C7—C8 1.370 (5)
N3—C6 1.331 (4) C7—H7 0.9500
N3—C10 1.361 (5) C8—C9 1.386 (6)
N4—N5 1.195 (4) C8—H8 0.9500
N5—N6 1.149 (4) C9—C10 1.368 (5)
N7—N8 1.212 (4) C9—H9 0.9500
N8—N9 1.146 (4) C10—H10 0.9500
C1—C2 1.360 (5)
N4—Pd1—N7 94.38 (12) C4—C3—C2 119.3 (4)
N4—Pd1—N1 87.57 (12) C4—C3—H3 120.3
N7—Pd1—N1 177.94 (11) C2—C3—H3 120.3
N4—Pd1—N3 176.68 (11) C3—C4—C5 118.5 (4)
N7—Pd1—N3 88.79 (12) C3—C4—H4 120.8
N1—Pd1—N3 89.28 (11) C5—C4—H4 120.8
C5—N1—C1 116.9 (3) N1—C5—N2 120.9 (3)
C5—N1—Pd1 122.9 (2) N1—C5—C4 123.2 (3)
C1—N1—Pd1 119.7 (2) N2—C5—C4 116.0 (3)
C6—N2—C5 129.5 (3) N3—C6—N2 121.1 (3)
C6—N2—H2N 114.8 N3—C6—C7 122.2 (3)
C5—N2—H2N 113.3 N2—C6—C7 116.6 (3)
C6—N3—C10 117.8 (3) C8—C7—C6 119.0 (4)
C6—N3—Pd1 123.2 (2) C8—C7—H7 120.5
C10—N3—Pd1 118.9 (2) C6—C7—H7 120.5
N5—N4—Pd1 129.9 (3) C7—C8—C9 119.2 (4)
N6—N5—N4 173.0 (4) C7—C8—H8 120.4
N8—N7—Pd1 129.2 (2) C9—C8—H8 120.4
N9—N8—N7 174.2 (4) C10—C9—C8 118.7 (4)
C2—C1—N1 123.3 (4) C10—C9—H9 120.7
C2—C1—H1 118.4 C8—C9—H9 120.7
N1—C1—H1 118.4 N3—C10—C9 123.0 (4)
C1—C2—C3 118.6 (4) N3—C10—H10 118.5
C1—C2—H2 120.7 C9—C10—H10 118.5
C3—C2—H2 120.7
N4—Pd1—N1—C5 −149.3 (3) C1—N1—C5—C4 −5.9 (5)
N3—Pd1—N1—C5 31.7 (3) Pd1—N1—C5—C4 165.2 (3)
N4—Pd1—N1—C1 21.6 (3) C6—N2—C5—N1 −22.4 (6)
N3—Pd1—N1—C1 −157.4 (3) C6—N2—C5—C4 157.9 (4)
N7—Pd1—N3—C6 151.4 (3) C3—C4—C5—N1 2.7 (6)
N1—Pd1—N3—C6 −27.9 (3) C3—C4—C5—N2 −177.7 (3)
N7—Pd1—N3—C10 −24.3 (3) C10—N3—C6—N2 −177.5 (3)
N1—Pd1—N3—C10 156.4 (3) Pd1—N3—C6—N2 6.8 (5)
N7—Pd1—N4—N5 −18.7 (4) C10—N3—C6—C7 3.5 (5)
N1—Pd1—N4—N5 160.7 (4) Pd1—N3—C6—C7 −172.2 (3)
N4—Pd1—N7—N8 29.4 (3) C5—N2—C6—N3 26.7 (6)
N3—Pd1—N7—N8 −151.6 (3) C5—N2—C6—C7 −154.3 (4)
C5—N1—C1—C2 4.6 (5) N3—C6—C7—C8 −2.5 (6)
Pd1—N1—C1—C2 −166.9 (3) N2—C6—C7—C8 178.5 (4)
N1—C1—C2—C3 0.1 (6) C6—C7—C8—C9 0.9 (6)
C1—C2—C3—C4 −3.5 (6) C7—C8—C9—C10 −0.4 (6)
C2—C3—C4—C5 2.2 (6) C6—N3—C10—C9 −3.1 (6)
C1—N1—C5—N2 174.4 (3) Pd1—N3—C10—C9 172.8 (3)
Pd1—N1—C5—N2 −14.4 (5) C8—C9—C10—N3 1.5 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2N···N9i 0.92 2.31 3.208 (4) 165
C1—H1···N4 0.95 2.35 2.816 (5) 110
C4—H4···N6i 0.95 2.40 3.175 (5) 138
C10—H10···N7 0.95 2.35 2.861 (5) 113

Symmetry code: (i) x, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2539).

References

  1. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Rauterkus, M. J., Fakih, S., Mock, C., Puscasu, I. & Krebs, B. (2003). Inorg. Chim. Acta, 350, 355–365.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  6. Yao, W.-R., Liu, Z.-H. & Zhang, Q.-F. (2003). Acta Cryst. C59, m139–m140. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global. DOI: 10.1107/S1600536812013074/fj2539sup1.cif

e-68-0m519-sup1.cif (22.2KB, cif)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES