Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Mar 31;68(Pt 4):m523–m524. doi: 10.1107/S1600536812013347

catena-Poly[(diaqua­strontium)-bis­{μ-5-[4-(1H-imidazol-1-yl)phen­yl]tetra­zolido}]

Shao-Wei Tong a, Shi-Jie Li b, Wen-Dong Song c,*, Dong-Liang Miao a, Qi Deng a
PMCID: PMC3343904  PMID: 22589872

Abstract

In the title complex polymer, [Sr(C10H7N6)2(H2O)2]n, the SrII atom lies on an inversion centre and is coordinated by four N atoms from two bidentate bridging trans-related 5-[4-(1H-imidazol-1-yl)phen­yl]tetra­zolide ligands [Sr—N = 2.387 (4) Å for the tetrazolide moiety and Sr—N = 2.273 (5) Å for the imidazole moiety], and by two O atoms from water mol­ecules [Sr—O = 2.464 (4) Å], giving a distorted octa­hedral coordination. Pairs of ligand bridges link the complex units, forming chains which extend along [111] and are inter-associated through Owater—H⋯N hydrogen bonds, giving a two-dimensional network structure parallel to (001). Weak π–π stacking inter­actions between the benzene and imidazole rings are also present [minimum ring centroid separation = 3.691 (4) Å].

Related literature  

For our previous work on imidazole derivatives as ligands, see: Tong et al. (2011); Li et al. (2010). Wang et al. (2010). For related structures, see: Huang et al. (2009); Cheng (2011).graphic file with name e-68-0m523-scheme1.jpg

Experimental  

Crystal data  

  • [Sr(C10H7N6)2(H2O)2]

  • M r = 546.08

  • Triclinic, Inline graphic

  • a = 7.6210 (6) Å

  • b = 8.0589 (7) Å

  • c = 9.1641 (9) Å

  • α = 102.783 (1)°

  • β = 97.544 (1)°

  • γ = 106.036 (2)°

  • V = 516.29 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.66 mm−1

  • T = 298 K

  • 0.37 × 0.30 × 0.21 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.439, T max = 0.605

  • 2616 measured reflections

  • 1789 independent reflections

  • 1756 reflections with I > 2σ(I)

  • R int = 0.013

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.118

  • S = 1.17

  • 1789 reflections

  • 161 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812013347/zs2191sup1.cif

e-68-0m523-sup1.cif (17.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812013347/zs2191Isup2.hkl

e-68-0m523-Isup2.hkl (88.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1C⋯N1i 0.85 2.07 2.915 (7) 171
O1—H1D⋯N2ii 0.85 2.10 2.948 (6) 171

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We acknowledge the Public Science and Technology Research Funds Projects of Ocean (grant No. 2000905021), the Guangdong Oceanic Fisheries Technology Promotion Project [grant No. A2009003-018(c)], the Guangdong Chinese Academy of Science Comprehensive Strategic Cooperation Project (grant No. 2009B091300121) and the Guangdong Province Key Project in the Field of Social Development [grant No. A2009011-007(c)].

supplementary crystallographic information

Comment

Recently, our research group has shown great interest in the solid-state coordination chemistry of N-heterocyclic carboxylic acids, such as 2-propyl-1H-imidazole-4,5-dicarboxylic acid and 1H-benzimidazole-5,6-dicarboxylic acid. We have synthesized a number of metal complexes using the monoanionic 5-[(4-imidazol-1-yl)phenyl]tetrazolide ligand with a series of metals, e.g. Mn, Cd and Sr (Tong et al., 2011; Li et al., 2010; Wang et al., 2010). In this paper, we report the structure of a new strontium complex with this ligand, obtained under hydrothermal conditions, the title complex polymer, [Sr(C10H7N6)2(H2O)2]n. The centrosymmetric complex molecule (Fig. 1) comprises a SrII ion coordinated by four N atoms from the two bidentate bridging trans- related 5-[(4-imidazol-1-yl)phenyl]tetrazolido ligands (two tetrazole and two imidazole) and two O atoms from the water molecules, giving a distorted octahedral stereochemistry [Sr—N = 2.273 (4), 2.387 (5) Å and Sr—O = 2.464 (4) Å]. Duplex bridging ligand molecules link the complex molecules forming polymer chains which extend along [111] and are inter-associated through water O—H···N hydrogen bonds (Table 1) giving a two-dimensional network structure. Weak π–π stacking interactions are also present between the phenyl and the imidazole rings [minimum ring centroid separation, 3.691 (4) Å]. The structures of similar complexes are also known (Huang et al., 2009; Cheng, 2011).

Experimental

A mixture of strontium chloride (0.1 mmol, 0.027 g) and 5-[4-imidazol-1-yl)phenyl]tetrazole (0.2 mmol, 0.043 g) in 12 ml of water was sealed in an autoclave equipped with a Teflon liner (25 ml) and then heated at 413 K for 3 days. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

Refinement

H atoms of the water molecule were located in a difference-Fourier map and refined as riding with an O—H distance restraint of 0.85 Å, with Uiso(H) = 1.2 Ueq(O). The imidazolyl and phenyl H atoms were located in a difference-Fourier but were refined as riding with C—H = 0.93 Å also with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular configuration and atom numbering scheme for the title complex showing 30% probability ellipsoids. For symmetry codes: (i) x + 1, y + 1, z + 1; (ii) -x, -y, -z; (iii) -x + 1, -y + 1, -z + 1.

Crystal data

[Sr(C10H7N6)2(H2O)2] Z = 1
Mr = 546.08 F(000) = 276
Triclinic, P1 Dx = 1.756 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.6210 (6) Å Cell parameters from 2869 reflections
b = 8.0589 (7) Å θ = 2.8–28.3°
c = 9.1641 (9) Å µ = 2.66 mm1
α = 102.783 (1)° T = 298 K
β = 97.544 (1)° Block, colourless
γ = 106.036 (2)° 0.37 × 0.30 × 0.21 mm
V = 516.29 (8) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 1789 independent reflections
Radiation source: fine-focus sealed tube 1756 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.013
φ and ω scans θmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −9→9
Tmin = 0.439, Tmax = 0.605 k = −9→7
2616 measured reflections l = −10→9

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0473P)2 + 1.6581P] where P = (Fo2 + 2Fc2)/3
S = 1.17 (Δ/σ)max < 0.001
1789 reflections Δρmax = 0.79 e Å3
161 parameters Δρmin = −0.43 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.260 (15)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sr1 0.50000 0.50000 0.50000 0.0271 (2)
O1 0.3110 (6) 0.2631 (5) 0.5968 (5) 0.0511 (12)
N1 −0.0566 (7) −0.7449 (6) −0.3419 (5) 0.0468 (16)
N2 −0.2033 (7) −0.8777 (6) −0.4402 (6) 0.0478 (16)
N3 −0.3273 (6) −0.8089 (6) −0.4930 (6) 0.0480 (16)
N4 −0.2656 (6) −0.6290 (6) −0.4306 (5) 0.0451 (14)
N5 0.3031 (6) 0.1033 (6) 0.0479 (5) 0.0411 (12)
N6 0.4352 (6) 0.3262 (6) 0.2555 (5) 0.0435 (14)
C1 −0.0992 (7) −0.5942 (7) −0.3381 (6) 0.0402 (17)
C2 0.0161 (7) −0.4150 (7) −0.2417 (6) 0.0418 (17)
C3 0.1352 (8) −0.3925 (8) −0.1057 (7) 0.0477 (17)
C4 0.2324 (8) −0.2232 (7) −0.0114 (7) 0.0481 (17)
C5 0.2105 (7) −0.0735 (7) −0.0516 (6) 0.0403 (17)
C6 0.0955 (8) −0.0935 (7) −0.1875 (6) 0.0473 (17)
C7 −0.0003 (8) −0.2634 (7) −0.2825 (6) 0.0454 (17)
C8 0.3753 (8) 0.1501 (7) 0.1989 (6) 0.0433 (17)
C9 0.4015 (8) 0.3956 (7) 0.1358 (6) 0.0460 (17)
C10 0.3208 (8) 0.2604 (7) 0.0071 (6) 0.0475 (17)
H1C 0.20900 0.27310 0.61930 0.0610*
H1D 0.29230 0.15410 0.55030 0.0610*
H3 0.14980 −0.49270 −0.07760 0.0580*
H4 0.31260 −0.21000 0.07910 0.0570*
H6 0.08210 0.00710 −0.21560 0.0570*
H7 −0.07670 −0.27600 −0.37480 0.0540*
H8 0.38200 0.06900 0.25590 0.0520*
H9 0.42970 0.51710 0.14180 0.0550*
H10 0.28420 0.27160 −0.09020 0.0570*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sr1 0.0303 (4) 0.0239 (4) 0.0238 (4) 0.0093 (2) 0.0006 (2) 0.0018 (2)
O1 0.049 (2) 0.043 (2) 0.061 (2) 0.0155 (17) 0.0138 (19) 0.0107 (18)
N1 0.046 (3) 0.043 (2) 0.050 (3) 0.016 (2) 0.007 (2) 0.009 (2)
N2 0.049 (3) 0.036 (2) 0.054 (3) 0.013 (2) 0.007 (2) 0.006 (2)
N3 0.044 (3) 0.038 (2) 0.057 (3) 0.012 (2) 0.004 (2) 0.008 (2)
N4 0.044 (2) 0.036 (2) 0.049 (3) 0.0105 (19) 0.004 (2) 0.0048 (19)
N5 0.045 (2) 0.040 (2) 0.037 (2) 0.0126 (19) 0.0065 (19) 0.0099 (18)
N6 0.048 (3) 0.039 (2) 0.039 (2) 0.012 (2) 0.0053 (19) 0.0061 (19)
C1 0.039 (3) 0.041 (3) 0.041 (3) 0.015 (2) 0.008 (2) 0.009 (2)
C2 0.039 (3) 0.044 (3) 0.042 (3) 0.014 (2) 0.010 (2) 0.009 (2)
C3 0.049 (3) 0.042 (3) 0.051 (3) 0.018 (2) 0.001 (3) 0.011 (2)
C4 0.049 (3) 0.046 (3) 0.045 (3) 0.017 (2) −0.002 (2) 0.008 (2)
C5 0.040 (3) 0.042 (3) 0.038 (3) 0.012 (2) 0.010 (2) 0.009 (2)
C6 0.055 (3) 0.039 (3) 0.044 (3) 0.010 (2) 0.004 (2) 0.013 (2)
C7 0.048 (3) 0.044 (3) 0.038 (3) 0.009 (2) 0.003 (2) 0.009 (2)
C8 0.051 (3) 0.039 (3) 0.039 (3) 0.015 (2) 0.005 (2) 0.010 (2)
C9 0.056 (3) 0.039 (3) 0.042 (3) 0.013 (2) 0.008 (2) 0.013 (2)
C10 0.061 (3) 0.041 (3) 0.038 (3) 0.013 (3) 0.006 (2) 0.012 (2)

Geometric parameters (Å, º)

Sr1—O1 2.464 (4) N6—C9 1.363 (7)
Sr1—N6 2.273 (4) C1—C2 1.473 (8)
Sr1—N4i 2.387 (5) C2—C7 1.387 (8)
Sr1—N4ii 2.387 (5) C2—C3 1.386 (8)
Sr1—O1iii 2.464 (4) C3—C4 1.382 (9)
Sr1—N6iii 2.273 (4) C4—C5 1.382 (8)
O1—H1C 0.8500 C5—C6 1.375 (8)
O1—H1D 0.8500 C6—C7 1.385 (8)
N1—N2 1.362 (7) C9—C10 1.352 (8)
N1—C1 1.336 (8) C3—H3 0.9300
N2—N3 1.313 (7) C4—H4 0.9300
N3—N4 1.355 (7) C6—H6 0.9300
N4—C1 1.350 (7) C7—H7 0.9300
N5—C8 1.347 (7) C8—H8 0.9300
N5—C10 1.375 (7) C9—H9 0.9300
N5—C5 1.435 (7) C10—H10 0.9300
N6—C8 1.321 (7)
O1—Sr1—N6 94.69 (16) N1—C1—N4 110.9 (5)
O1—Sr1—N4i 81.30 (16) N4—C1—C2 124.4 (5)
O1—Sr1—N4ii 98.70 (16) N1—C1—C2 124.7 (5)
O1—Sr1—O1iii 180.00 C3—C2—C7 118.4 (5)
O1—Sr1—N6iii 85.31 (16) C1—C2—C7 119.8 (5)
N4i—Sr1—N6 90.56 (16) C1—C2—C3 121.7 (5)
N4ii—Sr1—N6 89.44 (16) C2—C3—C4 120.9 (6)
O1iii—Sr1—N6 85.31 (16) C3—C4—C5 120.0 (6)
N6—Sr1—N6iii 180.00 N5—C5—C4 121.0 (5)
N4i—Sr1—N4ii 180.00 N5—C5—C6 119.2 (5)
O1iii—Sr1—N4i 98.70 (16) C4—C5—C6 119.8 (5)
N4i—Sr1—N6iii 89.44 (16) C5—C6—C7 120.0 (5)
O1iii—Sr1—N4ii 81.30 (16) C2—C7—C6 120.9 (5)
N4ii—Sr1—N6iii 90.56 (16) N5—C8—N6 111.2 (5)
O1iii—Sr1—N6iii 94.69 (16) N6—C9—C10 109.4 (5)
H1C—O1—H1D 108.00 N5—C10—C9 106.7 (5)
Sr1—O1—H1D 119.00 C2—C3—H3 120.00
Sr1—O1—H1C 118.00 C4—C3—H3 120.00
N2—N1—C1 105.0 (5) C3—C4—H4 120.00
N1—N2—N3 109.8 (5) C5—C4—H4 120.00
N2—N3—N4 108.9 (5) C5—C6—H6 120.00
N3—N4—C1 105.5 (5) C7—C6—H6 120.00
Sr1iv—N4—N3 110.5 (3) C2—C7—H7 120.00
Sr1iv—N4—C1 143.5 (4) C6—C7—H7 120.00
C8—N5—C10 106.5 (5) N5—C8—H8 124.00
C5—N5—C8 128.0 (5) N6—C8—H8 124.00
C5—N5—C10 125.3 (4) N6—C9—H9 125.00
Sr1—N6—C8 131.1 (4) C10—C9—H9 125.00
Sr1—N6—C9 120.4 (4) N5—C10—H10 127.00
C8—N6—C9 106.2 (4) C9—C10—H10 127.00
O1—Sr1—N6—C8 −20.5 (5) C10—N5—C8—N6 0.7 (7)
O1—Sr1—N6—C9 139.5 (4) C5—N5—C10—C9 174.7 (5)
N4i—Sr1—N6—C8 60.8 (5) C8—N5—C10—C9 −0.6 (7)
N4i—Sr1—N6—C9 −139.2 (4) Sr1—N6—C8—N5 161.7 (4)
N4ii—Sr1—N6—C8 −119.2 (5) C9—N6—C8—N5 −0.5 (7)
N4ii—Sr1—N6—C9 40.8 (4) Sr1—N6—C9—C10 −164.3 (4)
O1iii—Sr1—N6—C8 159.5 (5) C8—N6—C9—C10 0.1 (7)
O1iii—Sr1—N6—C9 −40.5 (4) N1—C1—C2—C3 −26.5 (9)
C1—N1—N2—N3 0.3 (6) N1—C1—C2—C7 156.8 (6)
N2—N1—C1—N4 −0.3 (6) N4—C1—C2—C3 151.0 (6)
N2—N1—C1—C2 177.6 (5) N4—C1—C2—C7 −25.6 (8)
N1—N2—N3—N4 −0.1 (6) C1—C2—C3—C4 −175.4 (6)
N2—N3—N4—C1 −0.1 (6) C7—C2—C3—C4 1.3 (9)
N2—N3—N4—Sr1iv −173.6 (4) C1—C2—C7—C6 174.8 (5)
N3—N4—C1—N1 0.2 (6) C3—C2—C7—C6 −2.0 (9)
N3—N4—C1—C2 −177.6 (5) C2—C3—C4—C5 0.5 (9)
Sr1iv—N4—C1—N1 170.0 (4) C3—C4—C5—N5 177.0 (5)
Sr1iv—N4—C1—C2 −7.8 (10) C3—C4—C5—C6 −1.7 (9)
C8—N5—C5—C4 −19.4 (9) N5—C5—C6—C7 −177.7 (5)
C8—N5—C5—C6 159.3 (6) C4—C5—C6—C7 1.0 (9)
C10—N5—C5—C4 166.4 (6) C5—C6—C7—C2 0.8 (9)
C10—N5—C5—C6 −14.9 (8) N6—C9—C10—N5 0.3 (7)
C5—N5—C8—N6 −174.4 (5)

Symmetry codes: (i) x+1, y+1, z+1; (ii) −x, −y, −z; (iii) −x+1, −y+1, −z+1; (iv) x−1, y−1, z−1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1C···N1v 0.85 2.07 2.915 (7) 171
O1—H1D···N2vi 0.85 2.10 2.948 (6) 171

Symmetry codes: (v) x, y+1, z+1; (vi) −x, −y−1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2191).

References

  1. Bruker (2007). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cheng, X.-C. (2011). Acta Cryst. E67, m1757. [DOI] [PMC free article] [PubMed]
  3. Huang, R. Y., Zhu, K., Chen, H., Liu, G. X. & Ren, X. M. (2009). Wuji Huaxue Xuebao, 25, 162–165.
  4. Li, S.-J., Miao, D.-L., Song, W.-D., Li, S.-H. & Yan, J.-B. (2010). Acta Cryst. E66, m1096–m1097. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Tong, S.-W., Li, S.-J., Song, W.-D., Miao, D.-L. & An, J.-B. (2011). Acta Cryst. E67, m1870–m1871. [DOI] [PMC free article] [PubMed]
  7. Wang, H., Li, X.-F., Song, W.-D., Ma, X.-T. & Liu, J.-H. (2010). Acta Cryst. E66, m151. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812013347/zs2191sup1.cif

e-68-0m523-sup1.cif (17.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812013347/zs2191Isup2.hkl

e-68-0m523-Isup2.hkl (88.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES